组合图形的面积教案(十四篇)

作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?下面我帮大家找寻并整理了一些优秀的教案范文,我们一起来了解一下吧。

组合图形的面积教案篇一

本节课还得预设学生在学习过程中可能出现哪些问题,做好提前准备,这样到课堂上才能真正做到“以不变应万变”。

1、在自主探索的活动中,理解组合图形面积的计算方法

2、能根据各种组合图形的条件,灵活有效的选择计算方法并进行正确的解答。

1、能运用所学的知识,解决生活中组合图形的实际问题。

2、通过图形的组合和分解培养分析问题、解决问题的能力及动手创新的意识学会把复杂问题转化为简单问题,渗透转化思想。

1、通过动手操作,给学生以美的享受,并能展示自我,张扬个性。

2、让孩子体验到成功的喜悦,培养了学生战胜困难的决心和勇气,团结友爱的美好情感。

:在探索活动中,理解组合图形面积计算的'多种方法,会找出计算每个简单图形所需的条件。

:选择有效的计算方法解决实际问题。

1、师:我们会求哪些平面图形的面积了?请回忆下面积计算公式。

2、看黑板上一些正六边形(六边相等、六角相等),你有它们的面积计算公式吗?那要求它的面积,怎么办呢?(转化成我们学过的图形)

[设计意图:让学生初步体会到学过的面积计算方法应用的广泛性,渗透转化思想,培养空间观念。]

1、割

那你能想办法用学过的方法来求正六边形的面积吗? 请上来画一画说一说。

这些同学的方法可以归结为一个字:割。就是把一个没学过的图形割成学过的图形,然后利用面积公式算出每一块面积,再求出整个图形的面积。且方法千变万化,只要你有目标,就一定能成功。

[设计意思:拓展思维,一题多解,感受探索的乐趣,培养学生学习平面图形的兴趣。]

2、补、大面积-小面积

出示一个组合图形

(1)师:请同学们选择一种方法计算这个组合图形的面积。(生独立完成)

师:谁来说说你是用哪种方法计算的。

生介绍,师根据学生的介绍演示不同的方法。

师:这几种方法你们最喜欢哪一种呢?

师:为什么?(引导学生选择分得最少的,计算又简洁的方法)

(2)这儿又有一种新方法,没有把组合图形分割,而是补上一块。(板演:补),算出补后的大面积,减去补上的那部分面积,便可得出原来图形的面积。(板演:大面积-小面积)

3、小结求组合图形面积常用的方法

割、补、大面积-小面积。

4、小试牛刀

课后第一题。

请说说你用了什么方法。你更喜欢哪种方法?

5、挑战

(1)独立思考

(2)讨论

(3)移、拼的方法

[设计意图:从易到难,层层深入,引出求组合图形面积的常用方法]

3、回顾本节课所学,你有什么收获吗?在求组合图形面积时,你有什么要提醒大家的吗?

[设计意图:锻炼学生总结概括能力,口语表达能力得到发展。]

4、练习:课后2、3

长方形面积=长×宽 割

正方形面积=边长×边长 补

平行四边形面积=底×高 拼

三角形面积=底×高÷2写 大面积-小面积

梯形面积=(上底+下底)×高÷2

组合图形的面积教案篇二

教师准备 ppt课件

⊙谈话揭题

1.谈话。

(1)我们学过哪些平面图形?你知道它们的周长、面积的计算公式吗?

预设

生1:我们学过三角形、长方形、正方形、平行四边形、梯形、圆和环形等平面图形。

生2:三角形的面积计算公式是“底×高÷2”。

……

(2)你们学过哪些立体图形?你们知道它们的表面积、体积的计算公式吗?

预设

生1:我们学过长方体、正方体、圆柱、圆锥。

生2:长方体的表面积……

2.揭题。

我们曾经学过的这些图形,一般称为基本图形或规则图形,这节课我们来复习组合图形、不规则图形的相关知识。

⊙回顾与整理

1.提问:如何求组合图形、不规则图形的周长或面积?

(一般通过“割补”“平移”“旋转”等方法,将它们转化成求基本图形周长或面积的和、差等)

2.提问:如何计算立体组合图形的表面积或体积?

(1)学生分组讨论。

(2)指名汇报。(学生自由回答,合理即可)

(3)教师小结。

在计算立体组合图形的表面积时,可以把每个面的面积进行累加,也可以借助视图来求表面积。

在计算立体组合图形的体积时,有的要把几个物体的体积相加来求体积,有的要从一个物体的体积里减去另一个物体的体积,这要根据具体情况而定。

无论是分割还是添补,都是把复杂的图形转化成简单的图形。

⊙典型例题解析

1.课件出示典型例题1。

(1)求阴影部分的面积。(单位:cm)

分析 本题考查学生求组合图形面积的能力。

因为阴影部分是不规则图形,所以可以采用阴影部分的面积=长方形的面积-大三角形的面积-小三角形的面积的方法来求面积。

解答 20×16-12×20÷2-8×16÷2=136(cm2)

(2)下面是两个完全相同的直角三角形,其中一部分重叠在一起,求阴影部分的面积。(单位:cm)

分析 从图中可以看出,阴影部分是一个梯形,但梯形的上、下底和高都不知道,所以无法直接求出它的面积。

观察图形可以看出:阴影部分的面积加上三角形efc的面积等于大三角形deg的面积,而梯形abef的面积加上三角形efc的面积等于大三角形abc的面积,且两个大三角形的面积相等,所以阴影部分的面积与梯形abef的面积相等,只要求出梯形abef的面积就可以求出阴影部分的面积。

解答 (8-3+8)×6÷2=39(cm2)

2.课件出示典型例题2。

将高都是1 m,底面半径分别是5 m、3 m和1 m的三个圆柱组成一个物体,求这个物体的.表面积。

分析 本题考查的是求立体组合图形表面积的能力。

如图,这个物体由三个圆柱组成,仔细观察可以发现:向上的露在外面的三个面的面积之和(两个圆环和一个圆)正好等于大圆柱一个底面的面积(或者说相当于大圆柱上底面的面积)。

物体的表面积=大圆柱的表面积+中圆柱的侧面积+小圆柱的侧面积

解答 2×3.14×52+2×3.14×5×1+2×3.14×3×1+2×3.14×1×1

=157+31.4+18.84+6.28

=213.52(m2)

组合图形的面积教案篇三

义务教育课程标准实验教科书人教版数学五年级上册第92~93页例4。

1.联系已有知识认识组合图形,会把组合图形分解成已学过的平面图形,能正确计算组合图形的面积。

2.通过观察、操作、分析,初步认识转化思想方法在组合图形面积计算中的运用;提高观察、分析、综合和运用转化的方法解决实际问题的能力。

3.增强探索数学的自觉性与创新意识,体验成功解决数学问题的愉悦。

:将组合图形转化成若干个已学过的基本图形。

根据组合图形的特点灵活进行转化,并找出隐含在图形中的条件。

:教师准备多媒体课件、实物投影仪;学生准备七巧板。

1.复习平面图形的面积。

(1)出示下列图形,让学生说说每个图形的面积怎样计算?

(2)学生说后,教师依次在图形的下面写上面积算公式:

s=ab s=a2 s=ah s=ah2

s=(a+b)h2

2.观察组合图形,激疑导入。

教师(投影)出示组合图形:房子侧面墙、多边形花坛、中队旗、七巧板拼成的长方形。

师:这些图形与我们学过的哪些图形相同?怎样计算它们的面积?(引导学生观察思考并说明这些图形分别是由几个我们已经学过的简单图形组成的,我们把它们叫做组合图形。板书课题:组合图形的面积计算)

(设计意图:通过复习学过的平面图形面积计算公式,巩固对简单图形面积计算方法的理解,为学习组合图形的面积计算做好铺垫。联系生活实际,通过投影展示多种组合图形,引导学生观察,用问题激发学生的求知欲,使揭示课题到渠成。)

1.认识组合图形。

(1)在组合图形中找一找简单图形。

师:在实际生活中,我们见到的物体表面有许多是由我们已经学过的长方形、正方形、平行四边形、三角形、梯形等基本图形组成的组合图形。现在请同学们认真观察屏幕上的组合图形,找一找房子侧面墙、多边形花坛、中队旗、七巧板拼成的长方形各由哪些简单图形组成?

(学生边说,教师边用彩色笔在投影片上把前面三种组合图形分割成几个简单图形。)

(2)找一找生活中见过的组合图形。

师:在日常生活中,同学们还见过哪些物体的表面是组合图形?它们是由哪些简单图形组成的?

(3)小组议一议,画一画组合图形。

(4)小结:组合图形是由几个简单图形组成的平面图形。

(设计意图:通过引导学生观察、寻找组合图形中的简单图形,寻找日常生活中的组合图形,引导学生议一议,画一画。在此基础上再引导学生归纳、概括组合图形的含义,建立组合图形的概念,使学生对组合图形有了清晰的认识。)2.探索组合图形面积的计算方法。

师:同学们认识了组合图形,接下来我们探索组合图形面积的计算方法。

(1)投影例题:张大叔有一块菜地,形状如下图。这种菜地的面积是多少平方米?

(2)探索计算方法。

教师发给每个学生印有上图的练习纸,按下列要求完成:

①想一想:这个图形是由哪几个简单图形拼成的?

②画一画:画上虚线,把组合图形分割成几个简单图形,看看谁的方法多?谁的方法好?

③找一找:寻找计算组合图形面积的条件。

④算一算:学生独立尝试计算组合图形的面积。

⑤说一说:学生汇报交流,先说一说把组合图形分割成哪几个简单图形,再利用课件展示分割过程,最后投影展示学生的不同计算方法。

方法一:求一个梯形和一个长方形面积的和。

(4+8)(10-5)2+54

=30+20

=50(m )

方法二:求一个梯形和一个三角形面积的和。

(5+10)42+8(10-5)2

=30+20

=50(m )

方法三:求一个三角形和一个长方形面积的.和。

(10-5)(8-4)2+104

=10+40

=50(m )

方法四:求两个三角形面积的和。

1082+542

=40+10

=50(m )

方法五:从一个长方形的面积中减去一个梯形的面积。

108-(10+5)(8-4)2

=80-30

=50(m )

⑥议一议。组织讨论,比较算法。上面五种计算和思考方法有何异同?为什么有的用加法算,有的用减法算?比一比,哪种计算方法比较简便?

3.小结计算方法。

先把组合图形分解成学过的几个简单图形,然后寻找计算简单图形面积的条件,最后运用加、减法求出组合图形的面积。但要注意,分解图形时应当考虑计算方便且要有计算面积所必需的数据。

教师板书:合理分解(转化)寻找计算简单图形面积的条件计算简单图形的面积运用加、减法(求和或求差)。

(设计意图:通过让学生想一想、画一画、找一找、算一算,鼓励学生寻求不同的解题策略,运用不同的思路计算面积,培养学生思维的灵活性,让学生创造性地解决问题;通过学生说一说、议一议,交流各自的计算方法,拓宽计算组合图形面积的思路,明确计算组合图形面积时不仅可以用加法算,有时也需要用减法算;明确分解图形时要考虑尽量用简便的方法计算,促进算法优化;通过小结计算方法,使学生进一步理解和掌握组合图形面积的计算方法,并认识到根据已知条件对图形进行分解,不是任意分解都能计算,培养学生思维的深刻性;通过教师板书解题思路,渗透数学转化思想,提升学生的数学思维能力。)三、解决问题,发展能力

1.下面是少先队的中队队旗,做一面中队旗要用红布多少平方米?

师:先用虚线画一画,可以把它分割成哪些简单的图形?看看谁的方法多?

(1)让学生独立完成。学生一般能想出下面两种方法:

①求两个梯形面积的和。

②求一个长方形和两个三角形面积的和。

(2)组织小组交流,引导学生想出第三种方法:

从一个长方形的面积减去一个三角形的面积。

(3)评价小结。

师:同学们不但想出了多种计算方法,而且知道了计算组合图形的面积既可以是合并求和用加法,也可以是去空求差用减法。

2.下图是一种机器零件的横截面图,求出阴影部分的面积是多少平方毫米?

师:先观察这幅图,想一想可以怎样求阴影部分的面积?

(1)让学生独立完成。

(2)组织小组交流、讨论:怎样求(阴影部分)组合图形的面积,说说解题思路。为什么要用减法计算?

(3)反馈评价。

3.下图是教室的一面墙。如果砌这面墙每平方米用砖185块,一共需要多少块砖?

师:要求一共需要用多少块砖?需要知道哪些条件?怎样求这面墙的面积?

(1)让学生独立完成。

(2)组织小组交流。

(3)引导反馈评价。

(4)自己订正错误。

4.摆一摆,量一量,算一算。

(1)用七巧板中的四块拼成一个组合图形,看看可以拼成怎样的组合图形?

(2)想一想,还有别的组合方法吗?再动手拼一拼。

(3)说一说,你是用哪四个图形组合起来的?

(4)量一量,量出求组合图形需要的有关数据。

(5)算一算,计算出组合图形的面积。

(6)评一评,学生(可能)拼成以下几种组合图形,先展示观察,再引导学生评价。

(设计意图:《数学课程标准(修改稿)》在解决问题目标中提出:初步学会从数学的角度发现问题和提出问题,综合运用数学知识和其他知识解决简单的实际问题,发展应用意识和实践能力。根据课标这一理念,在巩固练习环节,设计了解决三道实际问题和一道摆摆、量量、算算的开放题,让学生独立思考,小组交流,动手操作,自主完成,相互评价,主动订正,旨在巩固所学知识,让学生进一步掌握组合图形面积的计算方法,发展学生的求异创新思维能力,培养学生分析问题和解决简单实际问题的能力。)

师:怎样计算组合图形的面积?通过这节课的学习,你有什么收获?

组合图形的面积教案篇四

教材简析:

“组合图形的面积”是五年级上册的内容,是小学阶段平面几何直线型内容的最后章节。学生在三年级已经学习了长方形与正方形的面积计算,在本册的第二单元又学习了平行四边形、三角形与梯形的面积计算,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。教材在内容的呈现上突出了两个部分,一是感受计算组合图形面积的必要性,二是针对组合图形的特点,让学生自主探索计算组合图形的基本方法,并在交流、讨论中开阔思路,修正想法,从而更好地解决生活中有关组合图形的实际问题。

学情分析:

学生已经学习了基本图形的计算方法,有了一定的经验基础,尤其是第二单元转化思想的渗透,所有这些知识储备都会使学生学习的难度相对减少。学生在探索组合图形面积的计算方法时,由于思考问题的角度不同,他们在解答问题的过程中会产生不同的思考方法,对于方法的交流、借鉴、反思需要教师的有效组织。五年级学生已经具有了独立思考、与人交流的习惯和能力,思维上也有了一定的深度,但如何让每个学生都积极地参与到探索的活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。

教学目标:

1、认识组合图形,能在自主探索的活动中理解计算组合图形的多种方法,能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

2、能利用所学的知识解决生活中组合图形的'实际问题,培养学生独立思考与合作交流的习惯。

3、让学生感觉到数学与生活的密切联系,获得成功的学习体验。

4、进一步渗透转化的数学思想。

教学重点:

认识组合图形,能在自主探索的活动中理解计算组合图形的多种方法,能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

教学难点:

让学生感觉到数学与生活的密切联系,获得成功的学习体验。

教学过程:

一、复习铺垫,唤醒旧知

1、师:同学们,我们学过的平面图形有什么呢?它们的面积你们会计算吗?

2、计算各种基本图形的面积。

3、师:这些都是我们以前学过的一些基本图形(板书:基本图形)

师:看来这些基本图形的面积是难不倒你们了!

设计意图:复习学过的五种基本图形的面积计算方法,唤醒学生的旧知,为下面学习组合图形的面积计算作下铺垫。

二、自主探索,合作交流

1、情境引入、估算图形。

师:小华家新买了房子,这是装修效果图,他计划在客厅铺地板,客厅的形状是这样的。这是我们以前学过的图形吗?(它是一个不规则的图形)

师:请你们估一估它的面积大约是多少平方米?(估计值记录下来)

设计意图:在探索策略前,先安排估算的环节能起到培养学生估算意识的作用,同时又能让学生在估算的时候,潜移默化地运用添补和分割的转化思想。

2、独立探索、寻求方法。

师:到底它的面积是多少平方米呢?老师已经为大家准备了一张学习卡,请你们独立思考一下该怎么做,也可以和同学互相讨论,还不明白的话也可以举手请老师帮忙。

(学生活动,教师巡视,了解学生情况,指导帮助个别学生)

师:老师发现大家都很会思考,现在把你的方法说给你小组的同学听一听,看看你们小组有几种不同的方法。

设计意图:直接让学生凭借已有的经验探索计算组合图形面积的方法,给了学生更大的自主探索的空间。

3、赏析思路、分享方法。

学生可能出现以下几种方法。

(1)分割法。

①分成一个长方形和一个正方形。

师:谁来汇报你的想法?

师:这条线叫辅助线,是我们数学学习的好帮手,我们一般将它画成虚线。

师:那你是怎么计算它的面积的?6-3求出的是哪一段?12 21表示什么?(把长方形的面积加上正方形的面积)

师:这位同学用一条辅助线把这个不规则图形分成了一个长方形和一个正方形,其他同学有类似的方法吗?

②分成两个长方形。

③分成两个梯形。

师:其他同学还有不同的方法吗?

(2)添补法。

师:你为什么要补上这一块呢?

师:那你是怎么计算的?刚才这几种方法,最后一步都是用加法,而你这里为什么用减法呢?(把补上的这一块的面积减掉)

(3)割补法。

师:老师在自己学校上课,发现有个孩子是这样画,你们看行得通吗?

师:割下来的这部分能正好拼上吗?

设计意图:帮助学生理解多样化的方法,使学生在不断完善认识的过程中,学会倾听、学会吸纳他人的意见,享受积极思考获得的快乐。引导学生交流,引起思维的碰撞,使他们体会到解决问题方法的多样性。

4、明晰方法,渗透思想。

师:刚才我们用了这么多的方法来计算这个不规则图形的面积,如果让你把这些方法分一分,你打算怎么分?(学生分类)

师:第一类方法,用辅助线把不规则图形分割成我们学过的基本图形,在数学上我们称为分割法。(板书:分割法)用分割法计算时,要先算出各部分的面积,最后把它们加起来。(板书:求和)

师:这类方法叫做添补法(板书),用添补法计算,记得把添上的这部分面积减去。(板书:求差)

师:这种方法,既有分割,又有添补,它就叫――割补法。(板书:割补法)

师:同学们再观察一下,这些方法看似不同,但其实它们都有一个共同的特点,你能发现吗?(不论是分割或添补,目的都是――把不规则的图形――转化成――已学过的基本图形。板书:转化)

师:像这样由几个基本图形拼成的图形,我们把它叫做组合图形(板书:组合图形)现在你们会计算组合图形的面积了吗?(补充:面积)

师:其实在我们身边就有很多组合图形,一起来看看。(课件展示生活中的组合图形)

师:这是房子的平面图,它可以由哪些图形拼成呢?中队旗?

设计意图:让学生找方法的共同点,水到渠成地由学生揭示出转化思想,进而把转化思想根植于学生心中;欣赏组合图形的图案,给学生以美的享受,使学生感受到生活中组合图形的存在,加强数学与生活的密切联系。

三、应用练习,提升认识

出示田地平面图。

师:如果要把它转化成尽量少的基本图形,你能想出几种方法?

师:同学们想出的方法可真多,现在请你们选择自己的喜欢的方法,计算出它的面积,看谁算得又对又快。(重点交流缺少数据的方法)

师小结:看来,虽然求组合图形面积的方法是多样的,但我们还要根据所给的条件,灵活选择合理、简便的方法进行计算。(板书:合理 简便)

设计意图:在尊重编者意图的基础上进行了改动,主要是进一步培养学生能根据组合图形的条件,有效地选择计算方法并进行正确的解答。

四、畅谈收获,总结提升

师:通过这节课的学习,大家有哪些新的收获?

师:转化是一种重要的数学思想,对于我们数学学习有很大的帮助,其实在我们前面的学习中,也经常运用转化来学习新知识,看,在学习这些图形的面积时,我们都是把它转化成了我们学过的图形,在学习除数是小数的除法时,也把它转化成了除数是整数的除法,在今后的学习中,我们也会经常利用它学习新知识!

设计意图:使每个学生在回顾中学会整理、归纳、反思,提高自我学习的能力,获得成功学习的体验。同时引导学生在总结中有所提升,不仅仅在知识方面,重要的还有数学方法和数学思想方面的交流。

组合图形的面积教案篇五

本课是五年级上册第五单元内容,是在学生学习了长方形与正方形、平行四边形、三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。

《组合图形的面积》是学生在已经学习了长方形、正方形、平行四边形、三角形与梯形面积计算的基础上进行教学的。学生已初步具备了一定的空间思维能力,但只局限于对单一图形进行简单分析。本节课可以巩固已有知识,提高学生综合实践能力,有利于进一步发展学生的空间观念,同时让学生在数学思想方法及解决问题的思考策略方面有所发展。本课让学生在自主观察思考的前提下,通过小组合作学习、汇报交流来进一步拓宽学生的思维空间,通过与他人的交流与合作,获取更多的方法,提升学生的学习能力。

1、使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积

2、能运用所学知识解决生活中组合图形的实际问题。

3、自主探索,合作交流。培养学生认真思考,团结协作的能力。

4、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

【教学重点】探索并掌握组合图形的面积计算方法。

【教学难点】理解并掌握组合图形的组合及分解方法。

【学具准备】前置性作业

【教学设想】

在本课的学习中,我让学生小组合作学习、汇报交流创设一个广阔的学习空间,探索空间。通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。让学生在自主探索、合作交流的学习氛围中最大限度的参与到探索求组合图形的面积全过程,具体设计如下:

一、创设情境,激趣导入。

1.同学们,我们已经学习了哪些多平面图形?(生回答)

2.请同学们看大屏幕,认识组合图形。像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。

3.组合图形在我们生活中的应用很广泛(生举例),今天,我们就结合一个生活中的例子来学习组合图形的面积。(板书:组合图形的面积)

【设计意图】:根据学生已有经验,观察生活中的组合图形,让学生体会由几个简单的图形组合而成是组合图形,它们的面积怎么求。使学生逐步熟悉组合图形,调动学生的学习兴趣。

二、小组合作探究

1. 出示前置性作业小组交流

复习

1、说说你学过哪些平面图形 ?2、说说这些图形的面积计算公式?

1)分割法:

将整体分成几个基本图形,求出它们的面积和。

2)添补法:

用一个大图形减去一个小图形求出组合图形的面积。

师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的.理由。

师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同。所以请同学们想想,求组合图形面积时关键是做什么?

【设计意图】:学生通过小组合作交流解决组合图形的面积时,重视把学生的思维过程充分暴露出来,让学生认真观察、独立尝试、合作交流。为每个学生提供参与数学活动的空间和时间,鼓励学生用不同的方法进行计算,开拓思维,并引导学生寻找最简方法。

5.学生举例并解答(前置作业 我的例子)

结合学生自己举的例子解答讲解

【设计意图】:让学生举出自己能够解决的例子,增强他们解决问题的自信心。

6.练一练(前置作业我能行)。

⑴生独立计算。

⑵生展示思路。

【设计意图】:学生已经自己举例练习组合图形的面积了,教师再出不同形式的练习,既巩固了本课所学的知识,又培养了学生解决实际问题的能力。体现了数学来源于生活,应用于生活的教育理念。

三、应用新知,解决问题:

师: 同学们不仅合作做得好,独立解题也很棒。下面我们就用今天所学到的知识解决生活中的问题。

师: 通过刚才的练习,你认为该怎样求组合图形的面积?(生自由发言)

师小结: 可见求组合图形的面积可以用相加的方法,也可以用相减的方法。

【设计意图】:练习的设计是加深学生对本节课知识的巩固,因此在设计上,我由浅入深,遵循学生的思维潜能。

四、总结:(前置作业我的收获)

通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的最好?有哪些不明白的地方?

【设计意图】:通过本节课的学习,学生学会了求组合图形的面积,把自己的收获讲给大家听,也是对新知记忆和理解的又一次升华。

组合图形的面积教案篇六

教科书第90页的例题,完成例题下面的”做一做“和练习二十一的题目。

使学生初步了解组合图形面积的计算方法,会计算一些比较简单的组合图形的面积。

将复习中的图画在小黑板上,再将教学例题时所用的图也画在小黑板上。

一、复习

问:第一个图形是什么形?它的面积怎样计算?(学生回答,教师在长方形下面板书:s=ab,其他图形,学生分别回答后,教师在每个图的下面写出相应的计算面积的公式。)

二、新授。

1、教学例题。

教师:组合图形就是由我们已学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。在实际生活中有进需要计算这些组合图形的面积。例如有些房子侧面墙的形状是这样的:(出示小黑板)

问:这个图形的面积我们过去学过吗?(让学生仔细观察一下)

我们虽然没有学过计算这个图形面积的计算公式,可是能不能把这个图形分成几个我们已经学过的图形呢?怎样分?(指名学生到黑板前画一画,教师标出相关尺寸。)

现在把这个图形分成了一个三角形和一个正方形,它的面积怎样计算?(学生看教科书第90页上的例题,把书上的算式填完整。)

:在实际生活中我们见到的物体表面,有很多图形是由我们已经学过的`正方形、长方形、平行四边形、三角形或梯形组合而成的。计算这些图形的面积,一般是先把它们分成已学过的简单图形,分别计算出各个简单图形的面积,然后再把它们合起来,便可以求整个组合图形的面积。)

2、做例题下面”做一做“中的题目。

先让学生读题。

问:“这块菜地可以看成是由哪些图形组合而成?”

让每个学生在练习本上列式计算。做完后集体核对。

三、巩固练习。

做练习二十一中的题目。

第3题,投影片出示一面少先队的中队旗。

问:要计算这面中队旗的面积,怎样分成几个我们已经学过的图形呢?你是怎样做的?(让几个学生说一说自己的想法。

第4题,先让学生读题,再问:

“这个机器零件的横截面图的面积怎样计算?”(让几个学生说一说自己的想法)

“根据题目中标出的长度,怎样计算比较简便?”(用长方形的面积减去梯形缺口的面积。)

学生在练习本上列式计算,再集体订正。

四、作业。

练习二十一的第1题和第2题。

组合图形的面积教案篇七

1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、能运用所学的知识,解决生活中组合图形的实际问题。

4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。

教学重点:探索组合图形面积的计算方法。

教学难点:根据组合图形的条件,有效地选择计算方法。

一、复习:课件出示:

师:下面这些物体里有哪些图形?

说一说生活中哪些地方有组合图形。生畅所欲言。

师:三角形的面积计算方法是底乘以高除以2,这里的除以2你是怎么理解的?

师小结:我们把三角形面积的转化成平行四边形来推导出三角形的面积计算方法的。

二引入新课。

1、过渡:刚才的图形我们都是可以通过公式可以直接计算的,那这样的图形能直接计算吗?

师:这个问题,能用你学过的知识想办法解决吗?

小华家新买了住房,计划在客厅铺地板(客厅形状如图)。请你估计他家至少要买多大面积的地板,再实际算一算。

布置自主探索任务:

明确探索的要求;(把想法画在图上,并试着求出地板的面积)

交流要求:想好办法的同学,把你的想法告诉你的同桌,比较两的想法有什么不同。

提示:实在有困难的同学,可以与同桌进行合作。

2、生独立尝试,师巡视,并发现典型。

3、反馈:

师:谁来展示你的解决办法?

(实物投影展示,辅助学生说清楚:想法与解法。及中间数据的来源等。)

补充的知识有:用虚线画辅助线;将学生的“割”明确为“分”(画辅助线)。

可能出现的答案有:

将你的想法画在图形上,并试着求出图形的面积对于出现补的方法,在学生说的同时,用实物模型来演示补的过程及说明算法。

出现又割又补的知识,让学生展示,并帮助理解,但最后不再统一展示。

4、归纳:师:同学们,刚才咱们想出了这么多的方法,算出地板的面积是33平方米,我们一起来给这些方法来分分类吧,你会怎么分呢?分一分,补一补。

师:我们可以把这个图形通过分一分,也可以说是这个图形是如图1由一个小长方形与一个大长方形组合成,或如图3由两个梯形组合而成,或如图4由一个长方形与一个正方形组合而成。像这样的图形,我们一般称之为组合图形。(板书:组合图形)

今天,我们学的是组合图形的面积。(板书:的面积)。

师:求这个客厅的地板问题,同学们想出了各种各样的方法,这么多的方法,你个人更喜欢哪些方法呢?

(生可能会说到:分成的图形个数少比个数多要简单些与分成长方形、正方形要比梯形在计算上要简单些。)

师:同学生,刚才我们通过求客厅的地板问题解决了求组合图形的面积问题,在这么多的方法中,还是有一些方法,相对更简单些。比如,分成两个图形的比分成三个图形的要相对简单些;同样分成两个图形的,分成长方形、正方形的比分成梯形、三角形的在计算上相对又要简单些。

三、练习。

过渡:所以,我们在解决这类问题时,可以考虑要尽量的`(简单些)好,下面我们带着这样的想法,来看这个问题。课件出示:

右图表示的是一间房子侧面墙的形状。它的面积是多少平方米?

等生读明白题意后,布置练习纸。生独立尝试,师巡视,收集典型。反馈:将学生的典型作品,投影展示。可能的情况有

可能出现的其它问题有:请你来评价一下这两种方法。

(分成了不是已学过的图形)

(分得过细,数量上过多)

将下面图形分成我们已学过的图形

过渡:一个问题,同学生想出了这么多而又简单的方法,真是了不起。下面请看这里。

新丰小学有一块菜地,形状如右图。这块菜地的面积是多少平方米?

做一面中队旗用多少布?

在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面积是多少平方米?

有一块正方形空心地砖,它实际占地面积是多少?

学校校园里有一块长方形的地,想种上红花、黄花和绿草。一种设计方案如下图。你能分别算出红花、黄花、绿草的种植面积吗?

请你也设计一种方案,用上我们学过的图形,并求一求每种植物的种植面积。

师:看来,求组合图形的面积,并不是所有的方法都可以的,有时,我们还得根据条件选择合适的方法。

四:总结。

1、学习了这一课,你学会了什么?

2、最后,我们来轻松一下。

组合图形的面积教案篇八

1.知识目标:通过动手操作使学生理解组合图形的含义,理解并掌握组合图形的多种计算方法,并正确地计算组合图形的面积。

2.能力目标:通过学生自主探索,合作交流,激发学生的积极性和主动性。从而归纳组合图形面积的方法。

3.情感目标:在探索,实践活动中使学生获得成功的体验,感受数学知识的广泛应用。渗透转化的数学思想和方法。

教学重点:能根据条件求组合图形的面积。

教学难点:理解分解图形时简单图形的差。

教具准备:图形卡片

数学教学,要紧密联系学生的生活实际。新课开始之前,我由猜图形引出:

1.实物投影:同学们,你们说说这些图形像什么?

师:今天老师先和大家玩一个猜图形的小游戏。出示图形:猜猜它们像什么?

师:很简单,很容易吧!但是在这个简单的游戏中却蕴含着丰富的数学知识。今天就让我们一起去探索、去研究。

2.出示基本图形,从而复习已学过的基本知识。

师:在这两个拼成的图形中,有哪些是你认识的图形?梯形是哪里来的?还有一个学过的图形这里没有出现,它是什么呢?(贴出图形:正方形、长方形、三角形、梯形、平行四边形)

学生亲身体验和感知易于获得感性经验,提高实际操作能力。而观察、操作、讨论等都是数学活动中最常用的方法。因此,在教学过程中我尽量给学生创设更多的动手操作机会,提供丰富的材料,使他们可以亲自进行最广泛意义的实验、操作及通过观察结果、提出问题、讨论并自己寻找答案。

教学新课时,我首先让学生说一说、拼一拼、分一分。根据学生前面猜的结果,提出:自己用这些基本图形拼出自己喜欢的图案?

1.在拼图活动中认识组合图形。

师:同学们,不要小看了这五个基本平面图形,它能把我们带到神奇的图形世界,请你们也拼出一个你喜欢的图形。(独立完成)

师:同学们刚才拼出了各式各样的`图形,那么,谁能来介绍一下,你拼出的图形像什么?用到了哪些学过的基本图形?

生:利用实物投影展示自己的作品。

师:同学们说得真好,那么请你们看一看老师和你们所拼的各种不同图形,它们有没有共同的特点呢?(生自由发言)

师:虽然拼出的图形它们的形状不同,但都是由几个简单的图形拼出来的,所以我们把这些图形叫作组合图形。(板书:组合图形)

师:大家做得真不错,都可以成为小设计师了。那你们能不能从组合图形中发现基本图形呢?出示两个图形。

师:说说这里面有你认识的图形吗?你是怎样看出来的?

师:大家说得都不错,那你能不能做一做 ?(在题纸上做一做)

师:学生展示交流结果。

(选择虚线最合适,和图形中的实线加以区分。帮助我们解决组合图形面积的计算的这条虚线我们就叫它辅助线。)

师:刚才大家的学习都很积极努力,接下来要继续加油呀!

2.生:找到了组合图形和基本图形之间的关系,同时也理解了什么是组合图形。这时候,学生的积极性比较高,充分看出了让学生参与教学活动的教学效果。但是,在小组活动时,有的学生可能没有充分发挥自己的才能。

我看到学生比较积极,立刻抓住这个机会,对他们说:“你们想不想知道这些组合图形的面积呢?”孩子们齐声说道:“想!”于是我就利用课件出示了书中的例题,于是就分小组寻找解决组合图形面积的方法。

3.在探索活动中寻找计算方法。出示例题:

师:小华家买了新房子,计划在客厅铺地板,请大家看一看,出示图形。

师:现在请你估计一下,客厅的面积有多大?

师:这个图形实际上就是一个什么图形?

师:要想做到不浪费,不少买,我们应该怎么办呢?(板书:面积)

师:那么你想怎样求这个图形的面积呢?

学生立即四人一组开始活动,情绪高涨,主动学了起来。有的组找到了不同的方法。但有的组人数较多,没有参与到其中,浪费了时间,这是我在教学中需要改进的地方。

小组活动:请同学们利用自己手上的题纸,分一分,算一算。

师:谁能来代表你们组说说是怎样计算这个图形的面积呢?那么为什么要把它分成两个长方形或其他图形呢?(学生逐步介绍了自己探索中采用的分割方法)

学生很喜欢在课堂上留给他们自己学习的空间这样的学习方式。接着就是让孩子们展示自己的研究结果,并且说出自己的想法。根据学生所说发给他们小贴画,学生非常高兴。根据他们自主学习的过程,问道:“你发现了什么?”从而,总结出不同的最基本的求组合图形的方法。

师:根据不同的方法,请学生给这些方法分一分类。

师:板书:分割法和添补法。

师:在这些方法中,第几种解题方法计算起来比较快?为什么?(实物投影展示几种方法)

师:说说你喜欢那种方法?为什么?

师:虽然我们采用了不同的方法解决了这个问题,但是结果都是一样的,因此,在解题过程中要多角度思考问题,寻求多种方法解决问题。

利用比较,深化认识。让学生对照板书或者手中的不同方法,让学生想:你会选择哪种方法,为什么?从中选择最优的方法。

让学生在生活中找一找组合图形,因为组合在实际生活中应用比较广泛。我觉得学生有一种对知识的渴求,也喜欢在生活找到所学的知识。

1.出示图形进行练习

试一试:一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。

(1)这张硬纸板还剩下多大的面积?

(2)有一面墙,粉刷这面墙每平方米需用0.15千克涂料,一共要用多少千克涂料?

(3)选择你喜欢的组合图形,计算出它的面积(生活中你所见到的组合图形)。

四、小结。

师:说说你今天最大的收获。关于组合图形的面积的计算,你还有什么不懂或需要提醒大家注意的地方?

把学到的知识应用到生活中去,解决生活中的问题,这才是根本目的。于是我出示了学校粉刷墙这道题以及自己选择身边的组合图形来算一算的这个问题,让今天的知识紧密地联系了学生的生活实际,这时要求学生独立完成,培养学生解决问题的能力。

组合图形的面积教案篇九

组合图形面积的计算是平面图形知识在小学阶段的综合应用。计算一个组合图形的面积,有时可以有多种方法,为了提高学生的解题能力,除了让学生加强练习以外,还应教绐他们一定的解题技巧。经过多年的教学实践,我收集和整理了一些关于组合图形面积的计算方法和技巧。如割补法、平移法、等分法、等积变形法、翻折法、旋转法、重叠法等等。我们要根据图形的特征、已知条件,以及整体与部分的关系,选择最佳解法。

本节微课主要学习割补法、等积变形、旋转法等三种方法。

1、 知道求组合图形的面积就是求几个图形面积的和(或差);能正确地进行组合图形面积计算,并能灵活思考解决实际问题。

2、 注重对组合图形的`分析方法与计算技巧,有利于提高学生的识图能力、分析综合能力与空间想象能力。

讲解法、演示法

一 、割补法

这类方法一般是从组合图形中分割成几种不同的基本图形,这类图形的阴影部分面积就是求几个基本图形面积之和(或者差)。

ppt演示变化过程,并出示解题过程。

二、等积变形法。

这类方法是将题中的条件或问题替换成面积相等的另外的条件或问题,使原来复杂的图形变为简单明了的图形。

ppt演示变化过程,并出示解题过程。

三、旋转法。

这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图。

ppt演示变化过程,并出示解题过程。

四、小结方法

求组合图形面积可按以下步骤进行

1、弄清组合图形所求的是哪些部分的面积。

2、根据图中条件联想各种简单图形的特征,看组合图形可以分成几块什么样的图形,能否通过割补、等积变形、旋转等方法使图形化繁为简。

组合图形的面积教案篇十

教科书p75-76页的内容

1、知识与技能:

(1)明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算;

(2)能正确地分析图形,并能正确地求组合图形的面积。

2、能力目标:

(1)通过实践操作、练习,提高观察、分析能力和解题的灵活性;

(2)培养学生的自主探索、合作学习的能力。

3、情感与态度:

(1)培养学生积极参与数学学习活动的习惯;

(2)在学习过程中让学生体验到成功的乐趣,增强学习数学的信心。

学生能够通过自己的动手操作,掌握用割补法求组合图形面积的计算方法。

理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的方法求组合图形的面积。

一、创设情境,激趣导入

1、欣赏图片媒体出示:

师:数学真是无处不在呀!瞧!在很久很久以前,我国新疆地区有一座神秘的楼兰古国,那时人们安居乐业,看!(一座座美丽的房子)你们发现了什么?

师让学生说出有哪些基本图形组成并认识组合图形,感受“数学图形之美”

板书:组合图形

3、复习平面图形面积计算。

二、自主学习,探究新知

1、出示(一座房子的侧墙的图)

师:考古学家们在楼兰古国的遗址发现了其中的一堵保存比较好的墙,想知道

它的面积有多大?你有办法计算吗?

2、师:考古学家们要计算组合图形的面积来解决问题。其实,我们的生活中也有很多需要计算组合图形的面积的问题呢!瞧!淘气的好朋友小华家买新房,计划在客厅铺地板(出示客厅图)

(1)师:请你估一估,小华家的客厅面积大约是多少?

想一想,找同学来回答

展示学生的做法,并请他说说思考过程。

(2)师请生小组合作,讨论:计算小华家的客厅的实际面积是多少?

方法有哪些?

师:如果要你求这个组合图形的面积,你可以怎样求?

(3)生汇报:先把它分割成长方形和梯形,然后把它们的面积加起来……

师:用剪刀剪的方法有的`时候不太方便操作,我们可以用加辅助线的方法来把组合图形进行分割。(辅助线用虚线来画)

师:还有其他方法吗?

(生如果没有得出用补的方法)师拿出剪下的三角形问:这个组合图形,刚才是怎么得到的?能给你启发吗?(得出用长方形面积减去三角形的面积)

板书:贴+写

师小结:同学们真能干,有的把组合图形分割成我们学过的几个基本图形,再把它们的面积加起来,有的补上一个我们学过的基本图形,然后面积相减,用了很多种方法,但有一点是相同的,你能看出来是什么吗?(求出来的面积是一样的。)(依据学生回答,教师适时板书:合理割补、分块求积、加减组合)

2、基本练习

老师遇到了一个生活中的实际问题,想请同学们两人一组帮忙解答,看看哪个小组的方法最多?

(汇报)

在以后求组合图形面积的时候,你可以选择你认为最简单的方法来求。

学生自学例题及补充题,然后交流各题的解题策略,并引导比较异同。

三、实践活动

师:其实,在我们的身边很多物体的面都是组合图形,你能找出来吗?

出示队旗:其实,我们的中队旗就是一个组合图形。

(1)估一估:请你估一估,我们中队旗的面积大约是多少?想一想,找同学来回答

(2)议一议:如果要你求它的面积,你会用什么办法计算?用你的方法计算需要测量哪些边的长度呢?

(3)算一算:为了节省时间,有些数据我已经帮你们量过了(出示带有数据的中队旗)

用你认为简单的方法进行计算。先做好的小组上来板书。

反馈:你们是怎么思考的?

师:跟你们估计的结果比较一下,看谁估计的最正确,掌声送给他!

四通过这节课的学习,你有什么收获?

希望同学们把我们所学的知识充分的利用到我们的生活当中,去解决生活中出现的有关问题。

五、巩固练习,深化理解

1、展示学生课前做的七巧板拼图作品。

2、你能计算你的作品的面积吗?

小组合作、测量所需条件并计算面积。

指名交流计算方法,媒体随机出示学生解题策略。

组合图形的面积教案篇十一

课本第92页到第93页的教学内容

1、认识组合图形、会把组合图形分解成已学过的平面图形。

2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。

4、通过拼组图形,使学生感受教学与现实生活的密切关系,体会数学带给大家的生活美。

1.探索并掌握组合图形的面积计算方法。

2.理解并掌握组合图形的组合及分解方法。

教学用三角尺或教学挂图、ppt课件。

一、复习导入

1.复习。

你们已经学会了计算哪些平面图形的面积?说一说这些图形的面积计算公式?

长方形的面积=长×宽;正方形的面积=边长×边长

平行四边形的面积=底×高;三角形的面积=底×高÷2

梯形的面积=(上底+下底)×高÷2

2.导入。

3.大家学会的知识可真多。为了奖励你们,老师请你们去欣赏一些美丽的图案,请同学们欣赏时认真想想:你们发现了什么?

二、新授课

1.认识组合图形。

出示课本第92页的四幅图。

认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开课本第92页,先找一找,然后在四人小组内互相讨论。比比看哪一个小组的分法最简单?

(1)四人小组讨论。

(2)小组各自展示各种分法。

(3)让学生举例说说生活中的组合图形。

同学们,开动脑筋想象:生活中哪些地方还有组合图形

2.探索组合图形面积的计算方法。

教师引导:大家真了不起,知道生活中存在着这么多的美丽组合图形,那如果我们想知道这些组合图形有多大,实际上是求什么?现在我们就来探讨组合图形的.面积计算方法。

板书课题:组合图形的面积

(1)出示例题4(电子教材)

(2)学生独立解答。

学生解答时,让他们思考还有其他解法吗?如果有困难,可以在小组内互相帮助。

(3)学生汇报。

解法一:5×5+5×2÷2

解法二:(5+7)×2.5÷2×2

=25+5 =12×2.5÷2×2

=30(m2) = 30(m2)

学生在汇报时,教师提问:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同,所以请同学们想想。求组合图形面积时关键是做什么?(图形分解)

三、巩固练习

完成课本第93页的“做一做”。

问:这块地是由哪些简单的图形组成的?

1.学生独立计算。

2.学生汇报,展示思路。

四、课堂小结

通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的?有哪些不明白的地方?

在小结过程中,不仅让学生小结这节课学到的知识,而且让学生学会评价,学会评价自己和他人。

五、布置作业

这是我们学校将要开辟的一块草坪,如下图。你能算出它的面积吗?现在有两家公司联系,a公司说种一平方米草要5元,b公司说种同样的草一共需要2500元。如果让你决定,你会选择哪家公司?

组合图形的面积教案篇十二

1、在自主探索活动中,理解计算组合图形面积的多种方法。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、能运用所学的知识,解决生活中组合图形的实际问题。

能正确计算组合图形的面积。

能根据各种组合图形的条件,正确选择计算方法并解答。

a4纸 基本图形 作业练习

一、 谈话激趣,揭示课题

师:老师第一次来到黄村小学,见到同学们我非常高兴,初次再面老师给每个同学都带来了一份礼物,快打开来看看是什么:

1、 给学生发礼物

2、 复习各个平面图形的面积公式

(这里有长方形,正方形,三角形等,你们能说说这些平面图形的面积公式吗?)

3、 拼成自已喜欢的组合图形

请选择两个或两个以上的图形拼成你喜欢的图形。

4、 学生展示并说一说由哪些基本图形组成的。

(师:如果要求这个图形的面积你认为该怎样计算呢?谁来说一说?)

5、 教师总结:像这样由我们学过的一些基本图形组合而成的图形我们把它叫做组合图形,像这样的组合图形的面积要怎样求得呢?这节课我们就一起来探讨组合图形面积的计算方法。

二、 探索交流,解决问题

1、 出示教材第88页的情境图

师:这是智慧老人家客厅的平面图,他准备给客厅铺上地板。

2、 想一想,估一估

先让我们来估一估这个客厅的面积有多大呢?(师引导:根据这个客厅形状的'特点,我们可以用学过的哪个图形的面积去估计它的大小呢?)

(若学生估不出来)师再引导:是否可以用长为7米,宽为6米的长方形的面积去估计客厅的面积,如果可以,则客厅的面积是6*7=42平方米,所以客厅的面积不到42平方米,若看成是边长为6米的正方形的面积去做计客厅的面积,那么客厅的面积大约为36平方米。

师:刚才我们在估算客厅面积时是把它看成我们学过的长方形或正方形,那么我们是不是也可以把这个客厅的平面图形转化成我们已经学过的图形去计算它的面积呢?

3、 自主探索,计算面积

师:请同学们拿出老师给大家准备的练习纸,动笔画一画,算一算。

(师巡视,若发现学生不会再引导)刚才我们用简单的图形拼成组合图形,你能不能将这个组合图形分割成我们学过的基本图形,进而将组合图形的面积转化成已学过的图形的面积的计算。

(1)学生动手画一画,师提示:(加一条辅助线。并将分割后的图形加上编号,再对图形1、2进行计算。)

4、展示学生的作品,并由学生说说理由。(怎样计算的?)

5、(展示四种已计算的分法)再对前四种进行分类

(师:

分割法:

添补法:

割补法:

(师:图形分割后我们要看一看分割后计算每个图形面积所要的数据有没有?)

板书:

1、先转化成已学过的基本图形。

2、分割后的图形是否可以计算。

3、分割后的图形是否比较简单易算。

师:组合图形面积的计算我们先将这个图形转化成已学过的平面图形,再找出计算每个图形所需要的条件再进行计算。

三、 理解运用,巩固练习

师:通过解决智慧老人客厅的面积计算的问题,我们学习了组合图形面积的计算方法,在计算时我们一定要根据图形的实际特点,选用恰当的方法。

老师出两题考考大家,敢接受挑战吗?

1、 出示练习,学生做在练习纸上。

2、 讲评完第一题后,操作第二题。

四、 学生畅谈收获

通过这节课的学习,你在什么收获?

组合图形的面积教案篇十三

《义务教育课程标准实验教科书数学》(人教版)五年级上册 “组合图形的面积”

1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。

在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。

根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。

课件、图片等。

一、 创设情境,引导探索

师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。 (指名回答)

生1:这枝铅笔的面是由一个长方形和一个三角形组成的。

生2:这条小鱼的面是由两个三角形组成的。……

师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?

【设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。】

二、探索活动,寻求新知

师:生活中有许多组合图形,老师准备了3幅,大家观察一下,这些组合组图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?

图一 图二 图三 课件逐一出示图一、图二、图三,让学生发表意见。

生1:小房子的表面是由一个三角形和一个正方形组成的。

生2:风筝的面是由四个小三角形组成的。

生3:队旗的面是由一个梯形和一个三角形组成的。……

师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形? 生1:由两个或两个以上的图形组成的是组合图形。

生2:有几个平面图形组成的图形是组合图形。……

师小结:组合图形是由几个简单的图形组合而成的。

图一:是由三角形、长方形、加上长方形中间的正方形组成的,

面积 = 三角形面积+长方形面积-正方形面积

图二:是由两个三角形组成的。

面积 = 三角形面积+ 三角形面积

图三:作辅助线使它分成一个大梯形和一个三角形。

方法一:是由两个梯形组成的。

师:为什么要分成两个梯形?怎样分成两个梯形?

引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。

师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计

(板书:转化)。大家想想,用辅助线的方法还有不同的作法吗?

方法二:作辅助线补成一个长方形,使它变成一个大长方形减去一个三角形。

方法三:作辅助线使它分成一个大梯形和一个三角形。

(课件分别演示这三种方法)

分割法 添补法

师:数学中我们习惯用分割法或添补法,用辅助线来把一个复杂的组合图形转

变成比较简单的图形,为计算带来简便。画辅助线时要注意画虚线,以及用铅笔和直尺作图。

板书:分割法或添补法(转化):分解成简单图形。

师:请你找一找生活中哪些地方的表面有组合图形呢?(学生自由回答,对学生们正确的回答要给予好的评价,特别是要鼓励不爱举手的学生讲一讲。注意座在后排的学生表现)

师:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识? 生1:我想了解组合图形的周长。

生2:我想知道组合图形的.面积怎样计算。……

这节课我们重点学习组合图形的面积。

【设计意图:“方法是数学的行为、思想是数学的灵魂”, 既然它们是由几个简单图形组合而成的,那么分解它们的组成,就可以来个“原路返回”――分解成几个简单图形的和或差。培养学生灵活的分析问题解决问题的能力,帮助学生独立分析问题。潜意识的教学思想中既重“方法”又重“思想”。 体现数学知识从“行为”到“灵魂”的内化过程。同时形成强烈的求知欲。】

三、探讨例题,学习新知

师:同学们的表现真了不起。老师家这几天装修房子,要刷新墙体。刷新墙体的工人工资是平方米来计算的,请你们帮我算一算。(课件出示例4)

例4:右图表示的是一间房子侧面墙的形状。它的面积是多少平方米?

师:怎样才能计算出这个组合图形的面积呢?

先让学生思考,再动手计算。

交流汇报

方法一:把这个组合图形一分为二,一个是正方形,另一个是三角再分别算出正方形和三角形的面积,最后算出它们的面积和,就可以求出这个图形的面积。

师:这是一个不错的想法。要算每个简单图形的面积分别需要哪些条件?请找一找,并标出来。

指名学生找相应的条件。

在实物投影仪上展出示学生的答案

①5×5=25 (平方米)

②5×2÷2=5(平方米)

③25+5=30 (平方米)

答:房子侧面墙的面积是30平方米。

(注意检查做错的同学,找出错的原因。)

师:除了这种方法,还有同学用别的方法吗?

方法二:先把这个图形补上两个三角形,看作一个长方形,先算出长方的面积后,再减去两个小三角形的面积。

师:能找出每个简单图形的已知条件吗? 让学生找相应的条件。 展示学生答案

长方形:长:5+2=7米、宽:5米; 三角形:底是2米,高是2.5米。 5×(5+2)-2.5×2÷2×2

=35-5 =30(平方米)

答:房子侧面墙的面积是30平方米。

方法三:把这个图形从顶点向下作一条垂线,就分成两个梯形,这两个梯形面积是相等的,所以只要求出一个梯形的面积再乘以2,就得到这个组合图形的面积。 同样让学生找出计算梯形面积的相应已知条件。

展示学生的答案

(5+7)×2.5÷2×2=30(平方米) 答:房子侧面墙的面积是30平方米。

让学生发表意见。

小结:使用了分割法或添补法,作辅助线把组合图形转化成简单图形来计算面积。(也就是先把组合图形分解成已经学过的图形,然后分别求出它们的面积再相加。)

师:非常感谢大家为我解决了难题,在日常生活中,到处都有组合图形,我们计算面积时,根据“图形位移,面积不变”的道理,用辅助线把它进行割、补、拼转化成简单的图形,再计算出该组合图形的面积就方便多了,这些方法中有的简单,有的繁琐,如果没有要求多种方法的,我们尽量选择最简单的方法来计算。

【设计意图:对于例题的教学,由于学生有了新课开始的拼组基础,每个学生

对求它的面积会有一定的思考,把自己所知道的方法在小组内说一说,通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让学生进一步理解和掌握组合图形的计算方法,并引导学生寻找最简方法,实现方法的化。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。能充分利用刚学的学习方法解决实际问题。】

四、利用新知,解决生活中的问题。

做一做

刚才同学们帮老师算了刷新墙的面积,客厅大概是下图这种形状。准备铺上地板砖,大家能帮老师计算一下客厅的总面积吗?小组合作,讨论完成,教师参与小组活动。

方法一:把组合图形分割成两个 长方形。 4×3+3×7 =12+21 =33(cm2)

方法二:分割成一个长方形和一个正方形。 4×6+3×3 =24+9 =33(cm2)

第三种方法:分割成两个梯形。 (3+7)×3÷2+(3+6)×4

7×6-3×3 =42-9 =33(cm2)

让学生说一说试用了什么方法?前三种使用了分割法,最后一种使用了添补法。

练习过程如上,分解图形如下。同学们真了不起,老师很感谢大家。 2、孩子们利用今天所学的知识 ,做个助人为乐的学生,好吗?

现在你能帮工人叔叔算算这

个指示路牌的面积吗?

【设计意图:1、开放式练习,把枯燥无味的面积计算,溶入到丰富多彩的数学活动中,让学生知道数学与生活的密切联系,利用数学知识解决生活中的实际问题,同时对学生进行德育教育。2、前边的练习后进生可能出现错误,有失败感。自己选择习题,可能选到自己会做的,从而能体会一些成功。对于优生,可能不满足前边练习的深度,自主选择较深的题目,能拓展新知。】

五、课堂评价

师:这节课你学到了什么?

结束语:同学们在这节课表现非常出色!计算组合图形的面积,一般是把它们分割或添补成我们学过的简单图形,如长方形、正方形、三角形、梯形、平行四边形等,要注意根据已知条件分或补,再计算它们的面积。

【设计意图:以板书来表现,学生通过试做汇报、交流观察。体现了重视学生的思维过程,将思维过程充分的暴露出来,体现了算法多样性,为学生提供了充分的参与空间;体现了对学生思维能力的培养,发展了学生的空间观念,提高了学生解决问题的能力。】

1、这是我们学校将要开辟的一块草坪,如下图。由哪些简单图形组成的?你能算出它的面积吗?

现在有两家公司联系,a公司说种一平方米草要5元,b公司说种同样的草一共需要

2500元。如果让你决定,你会选择哪家公司?

2、同学们,我们学校少先大队准备给每个班做一面“中队旗”,不知道该用多少布,想请大家帮忙,你们愿意吗?我们已经知道“中队旗”也是一个组合图形,现在请同学们根据图中提供的数据,选择自己喜欢的方法计算出用布的面积。我们比一比谁的方法更新颖、更快捷!

1、在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面积是多少平方米?

想种上红花、黄花和绿草。一种设计方案如图。你能分别算出红花、黄花、绿草的种植面积吗?

答案:课堂检测a

1、50×33+35×12÷2

=1650+210

=1860(厘米)

2、33×26-26×13÷2

=758+169

=927(厘米)

课堂检测b

1、(40+70)×30÷2-30×15

=1650-450

=1200(厘米)

2、长方形地的面积:18×12=216(平方米) 绿草面积(一半):216÷2=158(平方米) 黄花面积:216÷4=58(平方米) 红花面积:216÷4=58(平方米)

组合图形的面积教案篇十四

92和93页练习十八

明确组合图形的意义;

知道求组合图形的面积就是求几个图形面积的和(或差);

能正确地进行组合图形面积计算,并能灵活思考解决实际问题。

一、复习。

“第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:s=ab

“第二个图形呢?”

......

学生分别口答后,教师在每个图的下面写出相应的计算面积的公式.

教师:计算这些图形的面积我们已经学会了,可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。

二、认识组合图形

1、让学生指出92页页的四幅图有哪些图形?

2、引导学生把下面的图形,组合成多边形(展示台上拼)

对学生的拼出的图形,有选择地出示其中的几个。(如下所示)

分别说出这些图形是由哪几个简单的图形组合而成。

师:怎样计算这些组合图形的面积呢?(板题)

二、组合图形面积的计算。

1.讨论计算上面拼成的组合图形的面积。(生板演其余每组完成一图)

订正,讨论第一图的两种方法。

5×5+5×6÷2[5+(5+6)]×5÷2

=25+15=16×5÷2

=40(平方厘米)=40(平方厘米)

2.在实际生活中,有些图形也是由几个简单的图形组合而成的(出示例1题目及图)。

图表示的是一间房子侧面墙的形状。

它的面积是多少平方米?

如果不分割能直接算出这个图形的`面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?(讨论方法后,再打开书计算,同时指名板演)

5×5+5×2÷2

还能用其他的划分方法求出它的面积吗?(分组讨论)

汇报讨论结果。可能有下面情况。

[5+(2+5)]×(5÷2)÷2×2

小结:一个组合图形,可以用多种方法划分成几个已经学过的简单图形,再分别计算出这些图形的面积,求出组合图形的面积,但要注意分割图形时,应当考虑计算的方便,特别要有计算面积所必需的数据。(比如--图示,能容易找出所需的数据吗?)

三、巩固初步

1.做一做/书93页

2.练习十八/第1题

3.练习十八/第2题

(1)由中队旗引入

(2)算出它的面积。(单位:厘米)--可能有下面几种情况

s总=s梯×2s总=s长-s三

5.练习十八/第3、4题

四、拓展练习

练习十八8*

课后记:

声明:准根文档网所有作品(图片、文字)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系 saizw@outlook.com