最新考研数学线性代数知识点总结 考研线性代数知识点通用

总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它能够使头脑更加清醒,目标更加明确,让我们一起来学习写总结吧。写总结的时候需要注意什么呢?有哪些格式需要注意呢?以下我给大家整理了一些优质的总结范文,希望对大家能够有所帮助。

考研数学线性代数知识点总结 考研线性代数知识点篇一

第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算

向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节。向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。

本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵a存在正交矩阵q使得a可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。

从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。其它知识点考小题,如随机事件与概率,数字特征等。

从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。随机变量之于概率正如矩阵之于线性代数。考生也可以看看考研真题,数一、数三概率考五道题,这五题的第一句话为“设随机变量x……”,“设总体x……”,“设x1,x2,…,xn为来自x的简单随机样本”,无论“随机变量”、“总体”和“样本”本质上都是随机变量。所以随机变量的理解至关重要。讨论完随机变量之后,讨论其描述方式。分布即为描述随机变量的方式。分布包括三种:分布函数、分布律和概率密度。其中分布函数是通用的描述工具,适用于所有随机变量,分布律只针对离散型随机变量而概率密度只针对连续型随机变量。之后讨论常见的离散型和连续性随机变量,考研范围内需要考生掌握七种常见分布。

介绍完一维随机变量之后,推广一下就得到了多维随机变量。多维分布总体上分成三种:联合分布,边缘分布和条件分布。其中每种分布又细分为分布函数、分布律和概率密度。只不过条件分布函数我们不考虑。该章常考大题,常考随机变量函数的分布和边缘分布、条件分布。之后讨论随机变量的独立性。

分布包含着随机变量的全部信息,如果只关心部分信息就要考虑数字特征了。数字特征考小题。把公式性质记清楚,多练习即可。

大数定律和中心极限定理是偏理论的内容,考试要求不高。

数理统计是对概率论的应用。其中考大题的地方是参数估计(矩估计和极大似然估计),考小题的点是常用统计量及其数字特征,三大统计分布,正态总体条件下统计量的特殊性质。

看来还是需要以考研大纲为基础,扎实学好基础知识,掌握基本的解题技巧,才能有效的攻破概率论考题。最后,除了要嘱咐大家扎实学习基础知识外,还要提醒各位考生合理安排复习计划,对概率论的复习切不可掉以轻心。

实际上相当于一些简单的计算题,用于考察“三基”及数学性质。选择题大致可分为三类:计算性的、概念性的与推理性的。主要是考查考生对数学概念、数学性质的理解,并能进行简单的推理、判定和比较。

对于数三来说高等数学证明题的范围大致有:极限存在性、不等式,零点的存在性、定积分的不等式、级数敛散性的论证。线性代数有矩阵可逆与否的讨论、向量组线性无关与相关的论证、线性方程组无解、唯一解、无穷多解的论证,矩阵可否对角化的论证,矩阵正定性的论证,关于秩的大小并用它来论证有关问题等等,可以说线代的证明题的范围比较广。至于概率统计证明题通常集中于随机变量的不相关性和独立性,估计的无偏性等。

综合题考查的是知识之间的有机结合,此类题难度一般为中等难度。同样每一试卷中都有一至二道应用题,前几年研究生考试中就考察了一道有关于经济类利息率的应用题,而合并后数三的应用题更会涉及经济方面,所以考生在平时一定要加强对经济类应用题的复习。

考研数学线性代数知识点总结 考研线性代数知识点篇二

线性代数的学习切入点是线性方程组。换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科。

线性方程组的特点:方程是未知数的一次齐次式,方程组的数目s和未知数的个数n可以相同,也可以不同。

关于线性方程组的解,有三个问题值得讨论:

1、方程组是否有解,即解的存在性问题;

2、方程组如何求解,有多少个;

3、方程组有不止一个解时,这些不同的解之间有无内在联系,即解的结构问题。

这最基础和最直接的求解线性方程组的方法,其中涉及到三种对方程的同解变换:

1、把某个方程的k倍加到另外一个方程上去;

2、交换某两个方程的位置;

3、用某个常数k乘以某个方程。我们把这三种变换统称为线性方程组的初等变换。

任意的线性方程组都可以通过初等变换化为阶梯形方程组。

由具体例子可看出,化为阶梯形方程组后,就可以依次解出每个未知数的值,从而求得方程组的解。

对方程组的解起决定性作用的是未知数的系数及其相对位置,所以可以把方程组的所有系数及常数项按原来的位置提取出来,形成一张表,通过研究这张表,就可以判断解的情况。我们把这样一张由若干个数按某种方式构成的表称为矩阵。

可以用矩阵的形式来表示一个线性方程组,这至少在书写和表达上都更加简洁。

高斯消元法中对线性方程组的初等变换,就对应的是矩阵的初等行变换。阶梯形方程组,对应的是阶梯形矩阵。换言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换化为阶梯形矩阵,求得解。

阶梯形矩阵的特点:左下方的元素全为零,每一行的第一个不为零的元素称为该行的主元。

对不同的线性方程组的具体求解结果进行归纳总结(有唯一解、无解、有无穷多解),再经过严格证明,可得到关于线性方程组解的判别定理:首先是通过初等变换将方程组化为阶梯形,若得到的阶梯形方程组中出现d=0这一项,则方程组无解,若未出现d=0一项,则方程组有解;在方程组有解的情况下,若阶梯形的非零行数目r等于未知量数目n,方程组有唯一解;若r

在利用初等变换得到阶梯型后,还可进一步得到最简形,使用最简形,最简形的特点是主元上方的元素也全为零,这对于求解未知量的值更加方便,但代价是之前需要经过更多的初等变换。在求解过程中,选择阶梯形还是最简形,取决于个人习惯。

常数项全为零的线性方程称为齐次方程组,齐次方程组必有零解。

齐次方程组的方程组个数若小于未知量个数,则方程组一定有非零解。

利用高斯消元法和解的判别定理,以及能够回答前述的基本问题:解的存在性问题和如何求解的问题,这是以线性方程组为出发点建立起来的最基本理论。

对于n个方程n个未知数的特殊情形,我们发现可以利用系数的某种组合来表示其解,这种按特定规则表示的系数组合称为一个线性方程组(或矩阵)的行列式。行列式的特点:有n!项,每项的符号由角标排列的逆序数决定,是一个数。

通过对行列式进行研究,得到了行列式具有的一些性质(如交换某两行其值反号、有两行对应成比例其值为零、可按行展开等等),这些性质都有助于我们更方便的计算行列式。

用系数行列式可以判断n个方程的n元线性方程组的解的情况,这就是克莱姆法则。

总而言之,可把行列式看作是为了研究方程数目与未知量数目相等的特殊情形时引出的一部分内容。

声明:准根文档网所有作品(图片、文字)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系 saizw@outlook.com