每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
1 实数集及其性质 2 确界定义与确界原理 3 函数概念 4有某些特性的函数(有界函数、单调函数、奇函数与偶函数、周期函数)
二、数列极限
1 数列极限概念 2 收敛数列的性质(唯一性、有界性、保号性、不等式性、迫敛性、四则运算) 3 数列极限存在的条件:包括单调有界定理与柯西(cauchy)准则
三、函数极限
1 函数极限概念 2 函数极限的性质(唯一性、局部有界性、局部保号性、不等式性、迫敛性、四则运算) 3 函数极限存在的条件:包括归结原则(heine 定理),单调有界定理与柯西准则 4 两个重要极限 5 无穷小量,无穷大量, 非正常极限,阶的比较,曲线的渐近线
四、函数的连续性
1 连续性概念,间断点及其分类 2 连续函数的性质(有界性、保号性、连续函数的四则运算、复合函数的连续性、反函数的连续性;闭区间上连续函数的有界性、取得最大值最小值性、介值性、一致连续性)3 实数集完备性的基本定理的应用 4 初等函数的连续性
五、导数与微分
1 导数的概念 2 求导法则 3 微分概念 4 高阶导数与高阶微分 5参量方程所确定的函数的导数
六、微分中值定理及其应用
1 中值定理(罗尔定理、拉格朗日定理、柯西定理) 2 不定式极限 3 泰勒公式(及其皮亚诺余项与拉格朗日余项、一些常用初等函数的泰勒展开式、应用于近似计算) 4 函数的单调性、极值、最大值与最小值 5 函数的凸性与拐点 6 函数图象的讨论
七 不定积分
1原函数与不定积分概念,基本积分公式 2 换元积分法与分部积分法 3 有理函数和可化为有理函数的积分
八、定积分
1定积分的概念及其几何意义 2 可积条件的应用(包括必要条件,可积准则),三类可积函数 3 定积分的性质(线性运算法则、区间可加性、不等式性质、绝对可积性,积分中值定理) 4 微积分学基本定理,定积分的分部积分法与换元法
九、反常积分
1无穷限反常积分概念、柯西准则,绝对收敛与条件收敛 2无穷限反常积分收敛性判别法:比较判别法及p-函数判别法,狄利克雷(dirichlet)判别法,阿贝尔(abel)判别法 3无界函数反常积分概念,无界函数反常积分比较判别法及p-函数判别法
十、定积分的应用
1 平面图形的面积 2 由截面面积求体积、旋转体的体积 3 曲线的弧长与曲率 4 旋转曲面的面积
十一、数项级数
1 级数收敛的概念,柯西收敛准则,收敛级数的性质 2 正项级数收敛判别法(比较判别法、p-级数判别法、比式与根式判别法、积分判别法) 3 一般项级数的绝对收敛与条件收敛、交错级数的莱布尼兹判别法,阿贝尔(abel)判别法与狄利克雷(dirichlet)判别法,绝对收敛级数的性质
十二、函数列与函数项级数
1 函数列与函数项级数的一致收敛性,柯西准则,函数项级数的维尔斯特拉斯(weierstrass)优级数判别法,狄利克雷(dirichlet)判别法,阿贝尔(abel)判别法 2 函数列极限函数与函数项级数和函数的连续性、可积性、可微性
十三、幂级数
1 幂函数的收敛性,阿贝尔定理,收敛半径与收敛域,内闭一致收敛性,和函数的分析性质 2 函数的幂级数展开
十四、傅里叶级数
1 傅里叶级数的概念,三角函数系的正交性 2 以2l为周期的函数的展开式,奇式与偶式展开 3 收敛定理的证明
十五、多元函数的极限与连续
1 平面点集与多元函数 2 二元函数的极限,重极限与累次极限 3 二元函数的连续性,有界闭域(集)上连续函数的性质
十六、多元函数的微分学
1偏导数与全微分概念,可微性 2 复合函数微分法,高阶导数,高阶微分,混合偏导数与其顺序无关性 3 方向导数与梯度 4 泰勒公式与极值问题
十七、隐函数定理及其应用
1隐函数的概念,隐函数定理 2隐函数组定理,隐函数组求导、反函数组与坐标变换,函数行列式及其性质 3 几何应用(空间曲线的切线与法平面,曲面的切平面与法线) 4 条件极值与拉格朗日乘数法
十八、含参量积分
1 含参量正常积分,连续性、可积性与可微性 2 含参量反常积分的收敛与一致收敛,柯西准则,维尔特拉斯(weierstrass)判别法,狄利克雷(dirichlet)判别法,阿贝尔(abel)判别法,含参量无穷积分的连续性,可积性与可微性 3 欧拉积分
十九、曲线积分
1第一型曲线积分的概念,性质和计算公式 2第二型曲线积分的概念,性质和计算公式,两类曲线积分之间的关系
二十、重积分
1 二重积分概念与性质 2 二重积分的计算(化为累次积分),二重积分的换元法(极坐标与一般变换) 3. 格林(green)公式,曲线积分与路线的无关性 3 三重积分的概念与计算,三重积分的换元法(柱坐标、球坐标与一般变换) 4 重积分的应用(体积、曲面面积等)
二十一、曲面积分
1第一型曲面积分的的概念与计算 2第二型曲面积分的概念与计算,两类曲面积分之间的关系 3高斯(gauss)公式,斯托克斯(stokes)公式
南京信息工程大学考研数学真题篇二
1、基本要求:
一元函数微积分学:
1. 理解和掌握邻域,有界集,上下确界 函数,复合函数,反函数,有界函数,单调函数,奇函数,偶函数概念。熟练掌握上下确界,复合函数,反函数的 应用。
2. 理解和掌握数列极限的定义,数列极限性质的原理及推导。单调有界原理,柯西准则及应用。函数极限的定义。函数极限存在的归结原理 连续性的定义及其证明,间断点及其分类。连续函数的局部性质,闭区间上连续函数的性质。区间套定理,柯西准则聚点定理,有限覆盖定理原理及证明。闭区间上的连续函数性质的原理及证明及应用。
3. 熟练掌握数列极限定义证明,运算求极限。函数极限定义证明,运算求极限。函数极限柯西准则及应用。两个重要极限的计算, 无穷小量,无穷大量概念,无穷小量阶的比较及应用。一致连续性及应用。
4. 理解和掌握:导数概念。 导数的四则运算。反函数的导数。复合函数的导数。求导法则与公式。微分概念,微分的运算法则。 高阶导数与高阶微分。 参数方程的一阶及 二阶导数。
5. 理解和掌握:不定积分的运算法则, 换元积分,分步积分法,有理函数的积分,三角函数的积分。定积分的定义,可积必要及充分条件,可积函数类。熟练掌握定积分的性质原理,微积分基本定理,换元积分法,分步积分法及应用。掌握非正常积分的定义,性质,熟练掌握非正常积分判别准则。
6. 理解和熟练掌握:级数一般判别原则,比较及根式判别方法,积分判别方法原理及使用。交错级数, 绝对收敛,阿贝尔判别法,阿贝尔。狄里克里判别法原理及应用。 函数列的一致收敛性,函数项级数的一致收敛性判别法原理及应用。一致收敛性函数列及函数项级数分析性质原理及应用。熟练掌握: 阿贝尔定理,收敛区间判别方法,幂级数的分析性质,泰勒级数,幂级数的展开原理及应用。
7. 熟练掌握: 为周期的傅里叶级数展开,收敛定理证明。 为周期的傅里叶级数展开。 为周期的傅里叶级数,偶函数与奇函数的傅里叶级数。
多元函数微积分学:
8. 掌握平面点集,函数概念。理解 完备性定理。熟练掌握二元函数的极限的计算,累次极限的计算。熟练掌握 连续性概念,闭域连续性的性质及应用。
9. 掌握可微性,全微分,偏导数,可微性条件概念。熟练掌握复合函数的求导法则,复合函数的全微分。理解方向导数与梯度概念。熟练掌握:高阶偏导数, 中值定理和泰勒公式, 极值的充分及必要条件原理及应用。熟练掌握隐函数, 隐函数组的求导原理及应用。
10. 掌握二重积分概念,二重积分可积条件。三重积分概念。曲面面积,重心,转动惯量,引力。第一型曲线积分与第一型曲面积分概念。第二型曲线积分概念。
11. 熟练掌握 二重积分的计算:累次积分,换元积分,参量积分求导。三重积分累次积分,换元积分的计算。理解和掌握:含参变量非正常积分判别方法,分析性质。欧拉积分概念及性质。熟练掌握第一型曲线积分与第一型曲面积分计算公式,第二型曲线积分计算公式,第二型曲面积分计算公式。格林公式,路径无关定理。高斯公式及原理,斯托克斯公式及原理。
2、分值比例:一元函数微积分学占75%,多元函数微积分学占25%。
3、题型分布:计算题+证明题。
4、其他规定:重点难点集中在一元函数微积分学部分,多元函数积分要理解其物理意义。