高一物理必修一知识点及公式(优质14篇)

在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。

高一物理必修一知识点及公式篇一

●匀速直线运动

1、定义:物体沿着直线运动,而且保持加速度不变,这种运动叫做匀变速直线运动。

2、匀变速直线运动的分类:

3、匀变速直线运动的v-t图象

实验小车的v-t图象是一条倾斜直线。由此可知,无论δt取何值,无论在什么时间阶段,δt对应的速度变化δv都相同,即δv/δt不变,则物体的 加速度不变。所以匀变速直线运动的v-t图象是一条倾斜直线。在数学函数图象中,δv/δt叫做图象的斜率,故v-t图象的斜率表示物体做匀变速直线运动 的加速度的大小。

高一物理必修一知识点及公式篇二

(1)没有形状、大小,而具有质量的点。

(2)质点是一个理想化的物理模型,实际并不存在。

(3)一个物体能否看成质点,并不取决于这个物体的大小,而是看在所研究的问题中物体的形状、大小和物体上各部分运动情况的差异是否为可以忽略的次要因素,要具体问题具体分析。

(1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。

(2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。

对参考系应明确以下几点:

①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果往往不同的。

②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。

③因为今后我们主要讨论地面上的物体的运动,所以通常取地面作为参照系

(1)位移是表示质点位置变化的物理量。路程是质点运动轨迹的长度。

(2)位移是矢量,可以用以初位置指向末位置的一条有向线段来表示。因此,位移的大小等于物体的初位置到末位置的直线距离。路程是标量,它是质点运动轨迹的长度。因此其大小与运动路径有关。

(3)一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单一方向的直线运动时,路程与位移的大小才相等。图1—1中质点轨迹acb的长度是路程,ab是位移s。

(4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。比如说某人从o点起走了50m路,我们就说不出终了位置在何处。

(1)表示物体运动快慢的物理量,它等于位移s跟发生这段位移所用时间t的比值。即v=s/t。速度是矢量,既有大小也有方向,其方向就是物体运动的方向。在国际单位制中,速度的单位是(m/s)米/秒。

(2)平均速度是描述作变速运动物体运动快慢的物理量。一个作变速运动的物体,如果在一段时间t内的位移为s,则我们定义v=s/t为物体在这段时间(或这段位移)上的平均速度。平均速度也是矢量,其方向就是物体在这段时间内的位移的方向。

(3)瞬时速度是指运动物体在某一时刻(或某一位置)的速度。从物理含义上看,瞬时速度指某一时刻附近极短时间内的平均速度。瞬时速度的大小叫瞬时速率,简称速率

(1)定义:物体在一条直线上运动,如果在相等的时间内位移相等,这种运动叫做匀速直线运动。

根据匀速直线运动的特点,质点在相等时间内通过的位移相等,质点在相等时间内通过的路程相等,质点的运动方向相同,质点在相等时间内的位移大小和路程相等。

(2)匀速直线运动的x—t图象和v—t图象

(1)位移图象(x—t图象)就是以纵轴表示位移,以横轴表示时间而作出的反映物体

运动规律的数学图象,匀速直线运动的位移图线是通过坐标原点的一条直线。

(2)匀速直线运动的v—t图象是一条平行于横轴(时间轴)的直线。

由图可以得到速度的大小和方向,如v1=20m/s,v2=—10m/s,表明一个质点沿正方向以20m/s的速度运动,另一个反方向以10m/s速度运动。

(1)加速度的定义:加速度是表示速度改变快慢的物理量,它等于速度的改变量跟发生这一改变量所用时间的比值,定义式:

(2)加速度是矢量,它的方向是速度变化的方向

(3)在变速直线运动中,若加速度的方向与速度方向相同,则质点做加速运动;若加速度的方向与速度方向相反,则则质点做减速运动。

1、实验步骤:

(1)把附有滑轮的长木板平放在实验桌上,将打点计时器固定在平板上,并接好电路

(2)把一条细绳拴在小车上,细绳跨过定滑轮,下面吊着重量适当的钩码。

(3)将纸带固定在小车尾部,并穿过打点计时器的限位孔

(4)拉住纸带,将小车移动至靠近打点计时器处,先接通电源,后放开纸带。

(5)断开电源,取下纸带

(6)换上新的纸带,再重复做三次

(1)匀变速直线运动的速度公式vt=vo+at(减速:vt=vo—at)

(2)此式只适用于匀变速直线运动。

(3)匀变速直线运动的位移公式s=vot+at2/2(减速:s=vot—at2/2)

(4)位移推论公式:(减速:)

(5)初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:s = at2(a————匀变速直线运动的加速度t————每个时间间隔的时间)

(1)自由落体运动物体只在重力作用下从静止开始下落的运动,叫做自由落体运动。

(2)自由落体加速度

(1)自由落体加速度也叫重力加速度,用g表示。

(2)重力加速度是由于地球的引力产生的,因此,它的方向总是竖直向下。其大小在地球上不同地方略有不,在地球表面,纬度越高,重力加速度的值就越大,在赤道上,重力加速度的值最小,但这种差异并不大。

(3)通常情况下取重力加速度g=10m/s2

(3)自由落体运动的规律vt=gt。 h=gt2/2,vt2=2gh

1、力是物体对物体的作用。⑴力不能脱离物体而独立存在。⑵物体间的作用是相互的。

2、力的三要素:力的大小、方向、作用点。

3、力作用于物体产生的两个作用效果。使受力物体发生形变或使受力物体的运动状态发生改变。

4、力的分类:

⑴按照力的性质命名:重力、弹力、摩擦力等。

⑵按照力的作用效果命名:拉力、推力、压力、支持力、动力、阻力、浮力、向心力等。

1、重力是由于地球的吸引而使物体受到的力

⑴地球上的物体受到重力,施力物体是地球。 ⑵重力的方向总是竖直向下的。

2、重心:物体的各个部分都受重力的作用,但从效果上看,我们可以认为各部分所受重力的作用都集中于一点,这个点就是物体所受重力的作用点,叫做物体的重心。

①质量均匀分布的有规则形状的均匀物体,它的重心在几何中心上。

②一般物体的重心不一定在几何中心上,可以在物体内,也可以在物体外。一般采用悬挂法。

3、重力的大小:g=mg

1、弹力

⑴发生弹性形变的物体,会对跟它接触的物体产生力的作用,这种力叫做弹力。

⑵产生弹力必须具备两个条件:①两物体直接接触;②两物体的接触处发生弹性形变。

2、弹力的方向:物体之间的正压力一定垂直于它们的接触面。绳对物体的拉力方向总是沿着绳而指向绳收缩的方向,在分析拉力方向时应先确定受力物体。

3、弹力的大小:弹力的大小与弹性形变的大小有关,弹性形变越大,弹力越大。弹簧弹力:f = kx(x为伸长量或压缩量,k为劲度系数)

4、相互接触的物体是否存在弹力的判断方法:如果物体间存在微小形变,不易觉察,这时可用假设法进行判定。

(1)滑动摩擦力:

说明:

a、fn为接触面间的弹力,可以大于g;也可以等于g;也可以小于g

b、为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面

积大小、接触面相对运动快慢以及正压力fn无关。

(2)静摩擦力:由物体的平衡条件或牛顿第二定律求解,与正压力无关。

大小范围:o

说明:

a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。

b、摩擦力可以作正功,也可以作负功,还可以不作功。

c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。

d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。

1、合力与分力如果一个力作用在物体上,它产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,而那几个力叫做这个力的分力。

2、共点力的合成

⑴共点力:几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力。

⑵力的合成方法求几个已知力的合力叫做力的合成。

a、若和在同一条直线上

①同向:合力方向与、的方向一致

②反向:合力,方向与、这两个力中较大的那个力同向。

b、互成θ角——用力的平行四边形定则

平行四边形定则:两个互成角度的力的合力,可以用表示这两个力的有向线段为邻边,作平行四边形,它的对角线就表示合力的大小及方向,这是矢量合成的普遍法则。

注意:(1)力的合成和分解都均遵从平行四边行法则。(2)两个力的合力范围:f1—f2 f f1+f2

(3)合力可以大于分力、也可以小于分力、也可以等于分力

(4)两个分力成直角时,用勾股定理或三角函数。

1、共点力作用下物体的平衡状态

(1)一个物体如果保持静止或者做匀速直线运动,我们就说这个物体处于平衡状态

(2)物体保持静止状态或做匀速直线运动时,其速度(包括大小和方向)不变,其加速度为零,这是共点力作用下物体处于平衡状态的运动学特征。

2、共点力作用下物体的平衡条件

共点力作用下物体的平衡条件是合力为零,亦即f合=0

(1)二力平衡:这两个共点力必然大小相等,方向相反,作用在同一条直线上。

(2)三力平衡:这三个共点力必然在同一平面内,且其中任何两个力的合力与第三个力大小相等,方向相反,作用在同一条直线上,即任何两个力的合力必与第三个力平衡。

(3)若物体在三个以上的共点力作用下处于平衡状态,通常可采用正交分解,必有:

f合x= f1x+f2x + ………+ fnx =0

f合y= f1y+f2y + ………+ fny =0(按接触面分解或按运动方向分解)

1、物理公式在确定物理量数量关系的同时,也确定了物理量的单位关系。基本单位就是根据物理量运算中的实际需要而选定的少数几个物理量单位;根据物理公式和基本单位确立的其它物理量的单位叫做导出单位。

2、在物理力学中,选定长度、质量和时间的单位作为基本单位,与其它的导出单位一起组成了力学单位制。选用不同的基本单位,可以组成不同的力学单位制,其中最常用的基本单位是长度为米(m),质量为千克(kg),时间为秒(s),由此还可得到其它的导出单位,它们一起组成了力学的国际单位制。

高一物理必修一知识点及公式篇三

机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。

运动的特性:普遍性,永恒性,多样性

参考系

1.任何运动都是相对于某个参照物而言的,这个参照物称为参考系。

2.参考系的选取是自由的。

(1)比较两个物体的运动必须选用同一参考系。

(2)参照物不一定静止,但被认为是静止的。

质点

1.在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。

2.质点条件:

(1)物体中各点的运动情况完全相同(物体做平动)

(2)物体的大小(线度)<<它通过的距离

3.质点具有相对性,而不具有绝对性。

4.理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。(为便于研究而建立的一种高度抽象的理想客体)

时间与时刻

1.钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。两个时刻之间的间隔称为时间,时间在时间轴上对应一段。

△t=t2—t1

2.时间和时刻的单位都是秒,符号为s,常见单位还有min,h。

3.通常以问题中的初始时刻为零点。

路程和位移

1.路程表示物体运动轨迹的长度,但不能完全确定物体位置的变化,是标量。

2.从物体运动的起点指向运动的重点的有向线段称为位移,是矢量。

3.物理学中,只有大小的物理量称为标量;既有大小又有方向的物理量称为矢量。

4.只有在质点做单向直线运动是,位移的大小等于路程。两者运算法则不同。

打点记时器:通过在纸带上打出一系列的点来记录物体运动信息的仪器。(电火花打点记时器——火花打点,电磁打点记时器——电磁打点);一般打出两个相邻的点的时间间隔是0.02s。

物体通过的路程与所用的时间之比叫做速度。

平均速度(与位移、时间间隔相对应)

物体运动的平均速度v是物体的位移s与发生这段位移所用时间t的比值。其方向与物体的位移方向相同。单位是m/s。

v=s/t

瞬时速度(与位置时刻相对应)

瞬时速度是物体在某时刻前后无穷短时间内的平均速度。其方向是物体在运动轨迹上过该点的切线方向。瞬时速率(简称速率)即瞬时速度的大小。

速率≥速度

高一物理必修一知识点及公式篇四

匀变速直线运动的研究

v=v0+at

x=v0t+1/2at2

v2-vo2=2ax

v=x/t=(v0+v)/2

1、vt/2=v=(v0+v)/2

2、vx/2=

3、△x=at2{xm-xn=(m-n)at2}

4、初速度为零的匀变速直线运动的比例式

应用基本关系式和推论时注意:

(1)、确定研究对象在哪个运动过程,并根据题意画出示意图.

(2)、求解运动学问题时一般都有多种解法,并探求最佳解法.

(1)、自由落体运动:v0=0a=gv=gth=1/2gt2v2=2gh

(2)、竖直上抛运动;v0=0a=-g

1、寻找三个关系:时间关系,速度关系,位移关系.两物体速度相等是两物体有最大或最小距离的临界条件.

2、处理方法:物理法,数学法,图象法.

高一物理必修一知识点及公式篇五

运动图象(只研究直线运动)

1、x—t图象(即位移图象)

(1)、纵截距表示物体的初始位置。

(2)、倾斜直线表示物体作匀变速直线运动,平直线表示物体静止,曲线表示物体作变速直线运动。

(3)、斜率表示速度。斜率的绝对值表示速度的大小,斜率的正负表示速度的方向。

2、v—t图象(速度图象)

(1)、纵截距表示物体的初速度。

(2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体作匀速直线运动,曲线表示物体作变加速直线运动(加速度大小发生变化)。

(3)、纵坐标表示速度。纵坐标的绝对值表示速度的大小,纵坐标的正负表示速度的方向。

(4)、斜率表示加速度。斜率的绝对值表示加速度的大小,斜率的正负表示加速度的方向。

(5)、面积表示位移。横轴上方的面积表示正位移,横轴下方的面积表示负位移。

实验:用打点计时器测速度

1、两种打点即使器的异同点

2、纸带分析;

(1)、从纸带上可直接判断时间间隔,用刻度尺可以测量位移。

(2)、可计算出经过某点的瞬时速度

(3)、可计算出加速度

高一物理必修一知识点及公式篇六

(1)将物理量区分为矢量和标量体现了用分类方法研究物理问题。

(2)矢量和标量的根本区别在于它们遵从不同的运算法则:标量用代数法;矢量用平行四边形定则或三角形定则。

(3)同一直线上矢量的合成可转为代数法,即规定某一方向为正方向,与正方向相同的物理量用正号代人,相反的用负号代人,然后求代数和,最后结果的正、负体现了方向,但有些物理量虽也有正负之分,运算法则也一样,但不能认为是矢量,最后结果的正负也不表示方向,如:功、重力势能、电势能、电势等。

几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力。

求几个已知力的合力叫做力的合成。

两个互成角度的力的合力,可以用表示这两个力的有向线段为邻边,作平行四边形,它的对角线就表示合力的大小及方向,这是矢量合成的普遍法则。

高一物理必修一知识点及公式篇七

1、物体形状回体积发生变化简称形变。

2、分类:按形式分:压缩形变、拉伸形变、弯曲形变、扭曲形变。

按效果分:弹性形变、塑性形变

3、弹力有无的判断:

1)定义法(产生条件)

2)搬移法:假设其中某一个弹力不存在,然后分析其状态是否有变化。

3)假设法:假设其中某一个弹力存在,然后分析其状态是否有变化。

1、物体具有恢复原状的性质称为弹性。

2、撤去外力后,物体能完全恢复原状的形变,称为弹性形变。

3、如果外力过大,撤去外力后,物体的形状不能完全恢复,这种现象为超过了物体的弹性限度,发生了塑性形变。

1、产生形变的物体由于要恢复原状,会对与它接触的物体产生力的作用,这种力称为弹力。

2、弹力方向垂直于两物体的接触面,与引起形变的外力方向相反,与恢复方向相同。

绳子弹力沿绳的收缩方向;铰链弹力沿杆方向;硬杆弹力可不沿杆方向。

弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。

3、在弹性限度内,弹簧弹力f的大小与弹簧的伸长或缩短量x成正比,即胡克定律。

f=kx

4、上式的k称为弹簧的劲度系数(倔强系数),反映了弹簧发生形变的难易程度。

5、弹簧的串、并联:串联:1/k=1/k1+1/k2并联:k=k1+k2

滑动摩擦力

1、两个相互接触的物体有相对滑动时,物体之间存在的摩擦叫做滑动摩擦。

2、在滑动摩擦中,物体间产生的阻碍物体相对滑动的作用力,叫做滑动摩擦力。

3、滑动摩擦力f的大小跟正压力n(≠g)成正比。即:f=μn

4、μ称为动摩擦因数,与相接触的物体材料和接触面的粗糙程度有关。0<μ<1。

5、滑动摩擦力的方向总是与物体相对滑动的方向相反,与其接触面相切。

6、条件:直接接触、相互挤压(弹力),相对运动/趋势。

7、摩擦力的大小与接触面积无关,与相对运动速度无关。

8、摩擦力可以是阻力,也可以是动力。

9、计算:公式法/二力平衡法。

研究静摩擦力

1、当物体具有相对滑动趋势时,物体间产生的摩擦叫做静摩擦,这时产生的摩擦力叫静摩擦力。

2、物体所受到的静摩擦力有一个限度,这个值叫静摩擦力。

3、静摩擦力的方向总与接触面相切,与物体相对运动趋势的方向相反。

4、静摩擦力的大小由物体的运动状态以及外部受力情况决定,与正压力无关,平衡时总与切面外力平衡。0≤f=f0≤fm

5、静摩擦力的大小与正压力接触面的粗糙程度有关。fm=μ0·n(μ≤μ0)

6、静摩擦有无的判断:概念法(相对运动趋势);二力平衡法;牛顿运动定律法;假设法(假设没有静摩擦)。

力的图示

1、力的图示是用一根带箭头的线段(定量)表示力的三要素的方法。

2、图示画法:选定标度(同一物体上标度应当统一),沿力的方向从力的作用点开始按比例画一线段,在线段末端标上箭头。

3、力的示意图:突出方向,不定量。

力的等效/替代

1、如果一个力的作用效果与另外几个力的共同效果作用相同,那么这个力与另外几个力可以相互替代,这个力称为另外几个力的合力,另外几个力称为这个力的分力。

2、根据具体情况进行力的替代,称为力的合成与分解。求几个力的合力叫力的合成,求一个力的分力叫力的分解。合力和分力具有等效替代的关系。

3、实验:平行四边形定则:p58

力的平行四边形定则

1、力的平行四边形定则:如果用表示两个共点力的线段为邻边作一个平行四边形,则这两个邻边的对角线表示合力的大小和方向。

2、一切矢量的运算都遵循平行四边形定则。

合力的计算

1、方法:公式法,图解法(平行四边形/多边形/△)

2、三角形定则:将两个分力首尾相接,连接始末端的有向线段即表示它们的合力。

3、设f为f1、f2的合力,θ为f1、f2的夹角,则:

f=√f12+f22+2f1f2cosθtanθ=f2sinθ/(f1+f2cosθ)

当两分力垂直时,f=f12+f22,当两分力大小相等时,f=2f1cos(θ/2)

1)|f1—f2|≤f≤|f1+f2|

2)随f1、f2夹角的增大,合力f逐渐减小。

3)当两个分力同向时θ=0,合力:f=f1+f2

4)当两个分力反向时θ=180°,合力最小:f=|f1—f2|

5)当两个分力垂直时θ=90°,f2=f12+f22

分力的计算

1、分解原则:力的实际效果/解题方便(正交分解)

2、受力分析顺序:g→n→f→电磁力

共点力

如果几个力作用在物体的同一点,或者它们的作用线相交于同一点(该点不一定在物体上),这几个力叫做共点力。

高一物理必修一知识点及公式篇八

重力g(n)g=mg;m:质量;g:9.8n/kg或者10n/kg

密度ρ(kg/m3)ρ=m/vm:质量;v:体积

合力f合(n)方向相同:f合=f1+f2[6]

方向相反:f合=f1-f2方向相反时,f1>f2

浮力f浮(n)f浮=g物-g视;g视:物体在液体的视重(测量值)

浮力f浮(n)f浮=g物;此公式只适用物体漂浮或悬浮

浮力f浮(n)f浮=g排=m排g=ρ液gv排;g排:排开液体的重力,m排:排开液体的质量,ρ液:液体的密度,v排:排开液体的体积(即浸入液体中的体积)

杠杆的平衡条件f1l1=f2l2;f1:动力,l1:动力臂,f2:阻力,l2:阻力臂

定滑轮f=g物,s=h,f:绳子自由端受到的拉力,g物:物体的重力,s:绳子自由端移动的距离,h:物体升高的距离

动滑轮f=(g物+g轮)/2,s=2h,g物:物体的重力,g轮:动滑轮的重力

滑轮组f=(g物+g轮)/n,s=nh,n:承担物重的段数

机械功w(j)w=fsf:力s:在力的方向上移动的距离

有用功:w有,总功:w总,w有=g物h,w总=fs,适用滑轮组竖直放置时机械效率η=w有/w总×100%

功w=fs=pt;1j=1n·m=1w·s

功率p=w/t=fv(匀速直线)1kw=103w,1mw=103kw

有用功w有用=gh=w总–w额=ηw总

额外功w额=w总–w有=g动h(忽略轮轴间摩擦)=fl(斜面)

总功w总=w有用+w额=fs=w有用/η

机械效率η=g/(nf)=g物/(g物+g动)定义式适用于动滑轮、滑轮组

功率p(w)p=w/t;w:功;t:时间

压强p(pa)p=f/sf:压力/s:受力面积

液体压强p(pa)p=ρghp:液体的密度h:深度(从液面到所求点的竖直距离)

热量q(j)q=cm△tc:物质的比热容m:质量,△t:温度的变化值

燃料燃烧放出的热量q(j)q=mq;m:质量,q:热值

高一物理必修一知识点及公式篇九

机械能

1.功

(1)做功的两个条件:作用在物体上的力.

物体在里的方向上通过的距离.

(2)功的大小: w=fscosa功是标量功的单位:焦耳(j)

1j=1n_

当0<= a <派2="" w="">0 f做正功f是动力

当a=派/2 w=0 (cos派/2=0) f不作功

当派/2<= a <派w<0 f做负功f是阻力

(3)总功的求法:

w总=w1+w2+w3……wn

w总=f合scosa

2.功率

(1)定义:功跟完成这些功所用时间的比值.

p=w/t功率是标量功率单位:瓦特(w)

此公式求的是平均功率

1w=1j/s 1000w=1kw

(2)功率的另一个表达式: p=fvcosa

当f与v方向相同时, p=fv. (此时cos0度=1)

此公式即可求平均功率,也可求瞬时功率

1)平均功率:当v为平均速度时

2)瞬时功率:当v为t时刻的瞬时速度

(3)额定功率:指机器正常工作时输出功率

实际功率:指机器在实际工作中的输出功率

正常工作时:实际功率≤额定功率

(4)机车运动问题(前提:阻力f恒定)

p=fv f=ma+f (由牛顿第二定律得)

汽车启动有两种模式

1)汽车以恒定功率启动(a在减小,一直到0)

p恒定v在增加f在减小尤f=ma+f

当f减小=f时v此时有值

2)汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)

a恒定f不变(f=ma+f) v在增加p实逐渐增加

此时的p为额定功率即p一定

p恒定v在增加f在减小尤f=ma+f

当f减小=f时v此时有值

3.功和能

(1)功和能的关系:做功的过程就是能量转化的过程

功是能量转化的量度

(2)功和能的区别:能是物体运动状态决定的物理量,即过程量

功是物体状态变化过程有关的物理量,即状态量

这是功和能的根本区别.

4.动能.动能定理

(1)动能定义:物体由于运动而具有的能量.用ek表示

表达式ek=1/2mv^2能是标量也是过程量

单位:焦耳(j) 1kg_^2/s^2 = 1j

(2)动能定理内容:合外力做的功等于物体动能的变化

表达式w合=δek=1/2mv^2-1/2mv0^2

适用范围:恒力做功,变力做功,分段做功,全程做功

5.重力势能

(1)定义:物体由于被举高而具有的能量.用ep表示

表达式ep=mgh是标量单位:焦耳(j)

(2)重力做功和重力势能的关系

w重=-δep

重力势能的变化由重力做功来量度

(3)重力做功的特点:只和初末位置有关,跟物体运动路径无关

重力势能是相对性的,和参考平面有关,一般以地面为参考平面

重力势能的变化是绝对的,和参考平面无关

(4)弹性势能:物体由于形变而具有的能量

弹性势能存在于发生弹性形变的物体中,跟形变的大小有关

弹性势能的变化由弹力做功来量度

6.机械能守恒定律

(1)机械能:动能,重力势能,弹性势能的总称

总机械能:e=ek+ep是标量也具有相对性

机械能的变化,等于非重力做功(比如阻力做的功)

δe=w非重

机械能之间可以相互转化

(2)机械能守恒定律:只有重力做功的情况下,物体的动能和重力势能

发生相互转化,但机械能保持不变

表达式: ek1+ep1=ek2+ep2成立条件:只有重力做功高一物理必修一知识点总结第一章运动的描述

高一物理必修一知识点及公式篇十

1、功

(1)功的概念:一个物体受到力的作用,如果在力的方向上发生一段位移,我们就说这个力对物体做了功。力和在力的方向上发生位移,是做功的两个不可缺少的因素。

(2)功的计算式:力对物体所做的功的大小,等于力的大小、位移的大小、力和位移的夹角的余弦三者的乘积:w=fscosα。

(3)功的单位:在国际单位制中,功的单位是焦耳,简称焦,符号是j。1j就是1n的力使物体在力的方向上发生lm位移所做的功。

2、功的计算

⑴恒力的功:根据公式w=fscosα,当00≤a<900时,cosα>0,w>0,表示力对物体做正功;当α=900时,cosα=0,w=0,表示力的方向与位移的方向垂直,力不做功;当900<α<1800时,cosα<0,w<0,表示力对物体做负功,或者说物体克服力做了功。

(2)合外力的功:等于各个力对物体做功的代数和,即:w合=w1+w2+w3+……

(3)用动能定理w=δek或功能关系求功。功是能量转化的量度。做功过程一定伴随能量的转化,并且做多少功就有多少能量发生转化。

3、功和冲量的比较

(1)功和冲量都是过程量,功表示力在空间上的积累效果,冲量表示力在时间上的积累效果。

(2)功是标量,其正、负表示是动力对物体做功还是物体克服阻力做功。冲量是矢量,其正、负号表示方向,计算冲量时要先规定正方向。

(3)做功的多少由力的大小、位移的大小及力和位移的夹角三个因素决定。冲量的大小只由力的大小和时间两个因素决定。力作用在物体上一段时间,力的冲量不为零,但力对物体做的功可能为零。

4、一对作用力和反作用力做功的特点

⑴一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零。

⑵一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。

高一物理必修一知识点及公式篇十一

时间间隔能展示运动的一个过程,时刻只能显示运动的一个瞬间。对一些关于时间间隔和时刻的表述,能够正确理解。例如:第3s末、3s时、第4s初……均为时刻;3s内、第3s、第2s至第3s内……均为时间间隔。区别:时刻在时间轴上表示一点,时间间隔在时间轴上表示一段。

位移表示位置变化,用由初位置到末位置的有向线段表示,是矢量。路程是运动轨迹的长度,是标量。只有当物体做单向直线运动时,位移的大小等于路程。一般情况下,路程≥位移的大小。

由于图象能直观地表示出物理过程和各物理量之间的关系,所以在解题的过程中被广泛应用。在运动学中,经常用到的有x-t图象和v—t图象。

1.理解图象的含义:(1)x-t图象是描述位移随时间的变化规律。(2)v—t图象是描述速度随时间的变化规律。

2.了解图象斜率的含义:(1)x-t图象中,图线的斜率表示速度。(2)v—t图象中,图线的斜率表示加速度。

高一物理必修一知识点及公式篇十二

线速度v=s/t=2πr/t2.角速度ω=φ/t=2π/t=2πf

向心加速度a=v^2/r=ω^2r=(2π/t)^2r4.向心力f心=mv^2/r=mω^2_=m(2π/t)^2_

周期与频率t=1/f6.角速度与线速度的关系v=ωr

角速度与转速的关系ω=2πn(此处频率与转速意义相同)

主要物理量及单位:弧长(s):米(m)角度(φ):弧度(rad)频率(f):赫(hz)

周期(t):秒(s)转速(n):r/s半径(r):米(m)线速度(v):m/s

角速度(ω):rad/s向心加速度:m/s2

注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。

(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。

高一物理必修一知识点及公式篇十三

描述一个物体的运动时,选来作为标准的的另外的物体。

运动是绝对的,静止是相对的。一个物体是运动的还是静止的,都是相对于参考系在而言的。

参考系的选择是任意的,被选为参考系的物体,我们假定它是静止的。选择不同的物体作为参考系,可能得出不同的结论,但选择时要使运动的描述尽量的简单。

通常以地面为参考系。

① 定义:用来代替物体的有质量的点。质点是一种理想化的模型,是科学的抽象。

② 物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。且物体能否看成质点,要具体问题具体分析。

(1)不能以物体的大小和形状为标准来判断物体是否可以看做质点,关键要看所研究问题的性质.当物体的大小和形状对所研究的问题的影响可以忽略不计时,物体可视为质点.

(2)质点并不是质量很小的点,要区别于几何学中的“点”.

时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。

位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量;

路程是质点运动轨迹的长度,是标量。

用来描述质点运动快慢和方向的物理量,是矢量。

(1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为v = δx/δt,方向与位移的方向相同。平均速度对变速运动只能作粗略的描述。

(2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。瞬时速度的大小简称速率,它是一个标量。

6、加速度:用量描述速度变化快慢的的物理量,其定义式为。

加速度是矢量,其方向与速度的变化量方向相同(注意与速度的方向没有关系),大小由两个因素决定。

1、忽略位移、速度、加速度的矢量性,只考虑大小,不注意方向。

2、错误理解平均速度,随意使用。

3、混淆速度、速度的增量和加速度之间的关系。

高一物理必修一知识点及公式篇十四

牛顿第二定律的内容是f=ma,这个公式搭建起了力与运动之间的关系。

我们可以通过对物体进行受力分析,研究其合外力,在通过牛顿第二定律f=ma,求出物体的加速度,进而分析物体的运动情况。

比如,求解物体在某个时刻的位移大小,速度大小,等等。

同样,我们也可以从运动学角度出发,通过题中的已知条件,结合匀变速直线运动的知识及公式,求解出物体的加速度a,进而再通过受力分析,来求解出某个力的大小。

比如,我们已知斜面上某物体在运动,已知某些运动条件,来求解摩擦力的大小,进而求解滑动摩擦系数μ。

您可以结合高一物理必修一的目录,来查看更多物理考点的解析。我们对考点的解析与教材目录一致,更加的简洁,也更加注重解题规律的分析与解题技巧的探究。

牛顿运动定律的基本解题步骤

(1)明确研究对象。可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。设每个质点的质量为mi,对应的加速度为ai,则有:f合=m1a1+m2a2+m3a3+……+mnan对此结论的证明:分别以质点组中的每个物体为研究对象用牛顿第二定律:∑f1=m1a1,∑f2=m2a2,……∑fn=mnan,将以上各式等号左、右分别相加,左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反的,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力f合。

(2)对研究对象进行受力分析。同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。

(3)若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的'方向,既可以分解力,也可以分解加速度)。

(4)当研究对象在研究过程的不同阶段受力情况有变化时,必须分阶段进行受力分析,分阶段列方程求解。另外解题中要注意临界条件的分析。凡是题目中出现“刚好”、“恰好”等字样的,往往要利用临界条件。所谓“临界”,就是物体处于两种不同的状态之间,可以认为它同时具有两种状态下的所有性质。在列方程时,要充分利用这种两重性。

声明:准根文档网所有作品(图片、文字)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系 saizw@outlook.com