最新七年级上册数学整式的加减知识点笔记 七年级上册数学整式的加减知识点思维导图汇总

无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。

七年级上册数学整式的加减知识点笔记 七年级上册数学整式的加减知识点思维导图篇一

在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。

单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

几个单项式的和叫多项式。

多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。

凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式。

所含字母相同,并且相同字母的指数也相同的单项式是同类项。

系数相加,字母与字母的指数不变。

去(添)括号时,若括号前边是"+"号,括号里的各项都不变号;若括号前边是"—"号,括号里的各项都要变号。

整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。

把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

七年级上册数学整式的加减知识点笔记 七年级上册数学整式的加减知识点思维导图篇二

1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。

2、系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1、

3、多项式:几个单项式的和叫多项式。

4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

5、常数项:不含字母的项叫做常数项。

6、多项式的排列

(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

7、多项式的排列时注意:

(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

(2)有两个或两个以上字母的多项式,排列时,要注意:

a、先确认按照哪个字母的指数来排列。

b、确定按这个字母向里排列,还是向外排列。

(3)整式:

单项式和多项式统称为整式。

8、 多项式的加法:

多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。

9、同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。

10、合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。

11、掌握同类项的概念时注意:

(1)判断几个单项式或项,是否是同类项,就要掌握两个条件:

①所含字母相同。

②相同字母的次数也相同。

(2)同类项与系数无关,与字母排列的顺序也无关。

(3)所有常数项都是同类项。

12、合并同类项步骤:

(1)准确的找出同类项;

(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变;

(3)写出合并后的'结果。

13、在掌握合并同类项时注意:

(1)如果两个同类项的系数互为相反数,合并同类项后,结果为0;

(2)不要漏掉不能合并的项;

(3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

14、整式的拓展

整式的乘除:重点是整式的乘除,尤其是其中的乘法公式。乘法公式的结构特征以及公式中的字母的广泛含义,学生不易掌握、因此,乘法公式的灵活运用是难点,添括号(或去括号)时,括号中符号的处理是另一个难点。添括号(或去括号)是对多项式的变形,要根据添括号(或去括号)的法则进行。在整式的乘除中,单项式的乘除是关键,这是因为,一般多项式的乘除都要转化为单项式的乘除。

整式四则运算的主要题型有:

(1)单项式的四则运算

此类题目多以选择题和应用题的形式出现,其特点是考查单项式的四则运算。

(2)单项式与多项式的运算

此类题目多以解答题的形式出现,技巧性强,其特点为考查单项式与多项式的四则运算。

声明:准根文档网所有作品(图片、文字)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系 saizw@outlook.com