最新最大公因数教学反思简短(十篇)

无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。

最大公因数教学反思简短篇一

本节课我有意识的在一开始设计了抢答环节,让学生判断大屏幕上几道题目的商的位数,进而发现不同,激发兴趣,引入本节课的学习。从效果上看,学生在判断的过程中比较感兴趣,并能初步感受与旧知的联系与不同,达到了预期的目的。

本节课我在这方面做的不好。在摆小棒理解算理环节,我领的比较多,学生和老师一问一答,比如:“先分什么?再分什么?每份是多少”等,虽然学生最后也弄明白了该如何分小棒,但学生的能力没有得到提高。在于老师的建议下,在重建设计中,我会注意放手,设置大问题。比如:“请同学们看着大屏幕上的小棒,想一想应该怎样分呢?先自己想一想,然后同桌交流一下。”让学生带着问题思考,在思考中考虑摆小棒的全过程,而不是想一开始那样,思路被割裂开了。之后再全班交流,教师也可适当引领点拨,但这和我之前的设计感觉就不一样了,后者更能体现学生主体地位。在这方面,我今后还应提高意识,不断实践。

计算教学,单纯的让学生计算势必会使学生产生厌倦。我联系学生实际和生活实际,设计出多种多样的练习题,比如:计算之后让学生思考问题“想一想:三位数除以一位数,什么时候商是三位数,什么时候商是两位数?”或让学生“火眼金睛”辨别对错,或让学生在解决实际问题中说一说先算什么再算什么,感受解决实际问题的一般环节,将思路渗透到日常教学中,或在最后让学生根据所学再来一组比赛等,结合学生不同的计算阶段提出不同的要求和练习形式,使单调枯燥的计算练习变得生动有趣,达到了较好的教学效果。

我将以本次讲课为契机,在今后的教学中应用本次活动学到的知识,加以实践,不断提高自身的教学平。

最大公因数教学反思简短篇二

学生的学习过程是一种特殊的认知过程,必须在积极主动的情况下在自己的逐步思考和探究中达到解决的目的。

1、小组讨论合作学习研究多了,独立思考就有所忽视。从数学学习的本质来说,独立思考是主流,合作交流应在独立思考的基础上进行。只有在独立思考的前提下,才有交流的可能。因此,在本课设计时,求两数的最大公约数。先让学生课前独立探究方法,在学生有充分独立思考的基础上再交流评价。才真正实现每个学生潜质的开发和学生之间真正的差异互补。

2、独特的见解总是在主体迷恋执着,充分自由的状态中萌芽出来的,在教学中应放下架子,蹲下身子来倾听学生,相信每个学生都会有精彩的表现。正如陶行知所说的:“学生能做许多你不能做的事,也能做许多你认为他不能做的事。”不要小看了孩子,要对每位孩子充满信心,从而使课堂频频发出精彩的光芒。如本课时在开放题的解答过程中,学生能在一些简单的尝试开始,从中逐步发现其中的规律,以至于应用获得的规律来实现问题解决的最优化,不得不惊奇孩子能力的巨大。

3、当数学问题情境作用于思考者时就有可能展开数学思维活动,可以说,问题的设计和问题的情境的创设是促进数学思考的客观性因素。让学生在问题情境中层层推出数学思考“还有没有其他的方法”“他的方法你认为怎样”“你是怎么想的”鼓励表扬敢于思索的同学,错误的回答也是对正确知识的一种辨析过程,新知识对每个每一次学习的学生都是一个发现、创造的大空间。

两个数的最大公约数的教学反思有探究就有发现,有发现就是

学习的成功。成功所带来的喜悦总是进一步学习的最大动力,自主探究的课堂,为个性不同的学生的发展留下了必要的空间,让他们都有机会表达自己的思想,以自己独特的方式去学习数学,发展知识,各自体验到学习数学的成功感。

最大公因数教学反思简短篇三

教学内容:第26~28页的例3、例4、“练一练”、“练习五”的第1~5题。

1、理解公因数的含义,掌握求两个公因数和最大公因数的方法。

2、经历“猜测——验证”的数学学习过程,感受科学探究的一般方法,培养抽象思维能力,积累数学活动经验。

3、感受数学的奇妙,培养对数学的积极情感。

教学重点和难点:理解公因数的含义,掌握求两个数最大公因数的方法。

一、自主构建公因数意义

1、出示边长6厘米、边长4厘米的小正方形个若干以及一个长18厘米、宽12厘米的长方形。

猜一猜:你觉得哪一种正方形可以将这个正方形铺满。

2、组织学生同桌合作,摆放小正方形,

教师要帮助学有困难的小组完成活动任务。

3、交流:边长6厘米的正方形纸可以正好铺满这个长方形。

为什么边长6厘米的正方形正好铺满这个长方形?

结合刚才的操作活动体验,学生明白:因为12÷6=2(竖排放2行),18÷6=3(横排放3列),也就是6既是12的因数,也是18的因数,所以可以正好摆满。

4、讨论:还有哪些边长是整厘米的正方形纸片也能正好铺满这个长方形?简单地解释自己推测的理由。

5、只要边长的厘米数既是12的因数,又是18的因数,就能正好铺满这个长方形吗?

6、提问:4是12和18的公因数吗?

7、通过刚才的学习,你有什么话想说吗?

二、独立探索找公因数的方法。

1、8和12的公因数有哪些?最大公因数是几?

放手让学生自己探索解决问题的方法。

2、交流:学生出现的方法:

(1)、分别写出8和12的因数,再找一找他们的公因数;

(2)、先找8的因数,再从8的因数中找12的因数;

……

交流时结合自己的方法说说这样找的理由,

3、“集合圈”

我们同样也可以用集合圈表示8和12的公因数。

出示集合圈,先让学生自己填写,再说说每一部分表示的含义。

4、观察比较,感受公因数的有限性,

公因数的集合圈与公倍数有什么不同的地方?为什么公因数集合圈中不需要省略号?引导学生从“因数的有限性”推想出“两个数的公因数的个数是有限的”。

5、练一练

先让学生根据要求完成。通过交流,进一步理解找两个数公因数和最大公因数的方法,感受两者的联系与区别

三.促进知识向技能的转化

1、“练习五”第1题

让学生独立完成,进一步理解集合圈的表示方法,深化对求两个数最大公因数的方法的认识。

2、“练习五”第4题

⑴先让学生自主判断第一组数,然后交流各自的方法,比较得出“利用2.3.5倍数的特征”进行判断,可以提高正确率。

⑵出示其他几组让学生选择合理的方法进行判断,同时提醒两个数的公因数可以有2.3.5中的多个,为后面学习月份积累策略。

3、“练习五”第5题

要启发学生用不同的方法找出每组数的最大公因数,提倡灵活运用各种策略快速解题,

四、通过本节课的学习,你有哪些收获?

五.作业布置

“练习五”第2.3题

这部分内容的结构与“公倍数和最小公倍数”基本相同,结合具体的情境,引导学生通过观察、操作、分析、比较、抽象和概括等活动,探索并理解公因数、最大公因数的含义,掌握求两个数的最大公因数的方法。

1、我让学生依托动手操作,加强对比观察,沟通新旧知识的联系,优化概念引进的过程。在教学例3时,我分四步组织学生

的活动。第一步,让学生“分别用边长6厘米和4厘米的正方形纸片铺长18厘米、宽12厘米的长方形”,铺前先思考:边长是多少的正方形可以铺满这个长方形?通过操作,学生都知道边长6厘米的正方形可以铺满长18厘米、宽12厘米的长方形。引导学生具体感知公因数的含义。第二步,组织讨论“还有哪些边长是整厘米数的正方形纸片也能正好铺满这个长方形”,通过思考,学生明白:“只要边长的厘米数既是12的因数,又是18的因数,就能正好铺满”这个长方形。第三步,可以先让学生说一说1、2、3和6的共同特征,再告诉学生1、2、3和6的共同特征,再告诉学生“1、2、3和6既是12的因数,又是18的因数,它们是12和18的公因数。第四步,让学生说一说4为什么不是12和18的公因数,使学生加深对公因数含义的理解,知道4是12的因数,但不是18的因数,所以4就不是12和18的公因数。通过正、反两方面的比较,优化概念的形成。

2、着眼于问题的解决,鼓励学生自主探索,逐步形成概念结构。教学例4是,我让学生先独立思考,用自己的方法找出8和12的公因数和最大的公因数。再通过交流,使学生在相互启发的过程中进一步打开思路,明确方法。由于学生已经积累了较为丰富的求两个数的最小公倍数的方法,因而这里的重点是让学生在自主探索的基础上合乎逻辑地表达自己的思考过程,并体会不同方法的内在一致性。这时,我适时引导学生建立概念结构:因数——公因数——最大公因数,并且辨析这些概念的联系与区别。此外,考虑到学生也已经初步认识了用集合图表示两个相交的集合圈,所以我让学生根据对有关概念的理解,独立把8和12的因数分别填在集合图中的合适部分,然后再看图说说各自的想法,说说每一个区域内的数分别表示什么,把静态的集合图转化成动态的探索对象,让学生加深对集合图的理解,也使集合思想的渗透落到实处。

3、练习的重点是让学生通过操作和填空,进一步理解求公因数和最大公因数的方法。让学生在解决问题的过程中提炼解题策略,优化概念应用的过程。

最大公因数教学反思简短篇四

要成对找,这在教学因数时就是一个难点。

猜测、验证的过程是学生进行探究活动的必要途径。在实践验证的过程中,我紧扣用边长( )厘米的正方形铺长方形,能铺( )层,每层铺( )个。并与其中有两种正方形不能正好铺满长方形的情况作比较,组织学生交流:“怎样的正方形才能正好铺满这个长方形?”由于前面铺垫充分,学生很顺利地得出了结论。例题3的教学, “哪种哪种纸片能正好铺满这个长方形?”“还有哪些边长整厘米数的正方形能正好铺满这个长方形?”“任何两个数的公因数个数都是有限的吗?”将学生的思维一步步引向深入,就能激发学生自主探究的热情。

交流中,应充分肯定学生的方法,学生在交流中出现问题时,应让他们自我修正,自我完善。并对四种方法进行比较“看哪种方法更便捷”。最大公因数的概念也要通过练习,让学生自己谈对最大公因数的感悟。

最大公因数教学反思简短篇五

公因数和最大公因数这一课应注重引导学生体验“概念形成”的过程,让学生“研究学习”、“自主探索”,学生不应是被动接受知识的容器,而应是在学习过程中主动积极的参与者,是认知过程的探索者,是学习活动的主体。

在教学过程中,我们不仅要求学生掌握抽象的数学结论,更应注重学生概念形成的过程。应引导学生参与探讨知识的形成过程,尽可能挖掘学生潜能,能让学生通过努力,自己解决问题,形成概念。通过创设生活情境,帮助王叔叔铺地装,将学生自然地带入求知的情境中去,在学生已有知识经验的基础上放手让学生去交流、探索。“哪一个正方形纸片能正好铺满长16厘米宽12厘米的长方形,为什么?”这样更利于培养学生自主探索、提出问题和解决问题的能力。接着进一步引导学生思考“还有哪些正方形纸片也能正好铺满长16厘米宽12厘米的长方形?”“为什么边长是1厘米、2厘米、4厘米的地砖可以正好铺满?而边长是3厘米的正方形地砖不能正好铺满?”让学生在反复地思考和交流中加深对公因数这一概念的理解。

教师抛出问题后,让学生独立探究。为了解决问题,学生充分调动了已有知识经验、方法、技能,找出“16和12的公因数和最大公因数”。在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识。

1.增强师生和生生之间的互动

在教学过程中各个环节的衔接不够紧凑,本课时的教学内容比较枯燥,在课堂上如何调动学生的积极性,活跃课堂气氛,使学生学的轻松、扎实。今后的教学中,在这一点上要都多下功夫。本课时的教学中,在组织学生交流找“16和12的公因数”的方法时,指名回答的形式过于单调,有的同学没有选着摆一摆的方法,而是直接用边长去除以小正方形边长来判断,我没有很好利用学生生成的资源,帮助学生理解,局限学生的思维发展。

2.方法多样化和方法优化

在组织学生进行交流时,应该注重引导学生有层次地介绍各种不同的方法。同时还要引导学生进行方法的比较和优化。

最大公因数教学反思简短篇六

我在教学时,改变教材中从单调的计算引出概念的做法,而是创设情景,通过生动有趣的画面,吸引学生积极思维,其特有的感染力和表现力,能直观生动地对学生心理起到催化作用,有效地激发了学生探究新知识的兴趣,使教与学始终处于活化状态。

“循环小数”是学生较难准确地掌握和表述的一个概念,特别是表述其意义的“从某一位起”、“依次”、“不断”、“重复出现”等抽象说法,学生难以理解。这节课的内容也较多,我打破教材编排顺序,将教学内容重新整合,灵活处理教材,先以王鹏喜欢跑步引入计算400÷75让学生计算发现商中重复出现一个相同的数字,再以王鹏喜欢游泳引出计算25÷22让学生计算发现商中有两个不断重复出现的数字。从而引导学生发现发现商的特点,引出“循环小数”。这样可以将难点分散,各个击破。

《数学课程标准》指出:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”数学学习不应是简单个体接受知识的过程,而是一个主体对自己感兴趣的且是现实的生活性主题的探究与发展的过程。在新课中,我首先从生活中的现象入手,再引导学生主动探究数学中的问题,通过让学生选择自己感兴趣的信息试算、观察、分析、比较、讨论等学习方式充分调动学生多种感官的参与,给学生提供自主合作探究的空间,让学生全面参与新知的发生、发展和形成过程,使学生真正体验到探究的乐趣和做数学的价值。

当然,在这节课中也有很多不足之处。如我在教学中过多地注意预设,使教学放不开手脚,环节安排趋于饱和,这样压缩了学生思维空间,在今后的教学中,特别是环节预设应在于精、在于厚实。

最大公因数教学反思简短篇七

分析基础知识:本单元是在学生已经理解和掌握倍数、因数的含义,初步学会找一个数的倍数和因数,知道一个数的倍数和因数的特点的基础上进行教学的。这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和通分以及分数四则计算的基础。教材分两段安排教学内容:第一段,认识公倍数、最小公倍数,探索找两个数的最小公倍数的方法;第二段,认识公因数、最大公因数,探索找两个数的最大公因数的方法。此外,在本单元的最后还安排了实践与综合应用《数字与信息》。

以往教学公因数的概念,通常是直接找出两个自然数的因数,然后让学生发现有的因数是两个数公有的,从而揭示公因数和最大公因数的概念。本单元教材注意以直观的操作活动,让学生经历公因数和最大公因数概念的形成过程。这样安排有两点好处:一是学生通过操作活动,能体会公倍数和公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。在这节课上,让学生按要求自主操作,发现用边长6厘米的正方形正好铺满长18厘米,宽12厘米的长方形。在发现结果的同时,还引导学生联系除法算式进行思考,对直观操作活动的初步抽象。再把初步发现的结论进行类推,发现用边长1厘米、2厘米、3厘米6厘米的正方形都正好铺满长18厘米,宽12厘米的长方形。在此基础上,引导学生思考1、2、3、6这些数和18、12有什么关系。这时揭示公因数和最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。并在此基础上,借助直观的集合图显示公因数的意义。实实在在让学生经历了概念的形成过程,效果较好。

例3中,教师宣布游戏规则后,放手让学生动手操作,直观感知——思考原因——想象延伸——讨论思辨——明确意义。例4更是学生探究广阔的平台,教师抛出问题后,让学生独立探究。为了解决问题,学生充分调动了已有知识经验、方法、技能,八仙过海各显神通,找出了各种求“12和18的公因数和最大公因数”的方法。在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识,也充分体现了教师驾驭教材,调控学生的能力。

课程标准只要求在1~100的自然数中,能找出10以内两个自然数的公倍数和最小公倍数,二是只要求在1~100的自然数中,能找出两个自然数的公因数和最大公因数,而不是用分解质因数的方法求出公倍数或公因数。不教学用分解质因数的方法求最小公倍数和最大公因数还有两个原因:一是通过列举出两个数的倍数或因数的方法,找出公倍数或公因数。突出对公倍数和公因数意义的理解;二是学生对用短除的形式求最大公因数和最小公倍数的算理理解有困难,减轻学生的学习负担。所以在教学找公倍数或公因数时,应提倡思考方法多样化。例4教学中,学生得出了三种方法来寻找12和18的公因数和最大公因数。(当然到底是三种还是两种有待商榷,不过在这里,为了便于比较我们姑且称之为三种吧)这就存在了一个方法优化的过程,哪一种方法会更简单?通过对比,大多数学生赞同方法二。通过讨论,引导学生以后解决此类问题时可以多运用较好的方法二。在这中间教师注意到了引导、小结、鼓励,师生共同得出结论。

复习题中回顾了四年级知识基础、列举法和标记法,在例3中,学生思考“还有哪些边长整厘米的正方形纸片也能正好铺满这个长方形?”时就有了基础。例4中,学生也知道用列举法和标记法来解决问题。

特别是用集合图来表示因数和公因数的教学值得一提。有趣的游戏,预料中的争执,恰到好处的体现了图的妙用,图的填法比一步步教学生如何填更有效,也更不易遗忘。练习五,第一题在填完集合图后对公有因数和独有因数意义的的提升,为下面的学习作了伏笔。体会初步的集合思想。

练一练,并没有局限于画画△、○,找找公因数和最大公因数,而是进一步指导学生观察,发现公因数都比小的数小(18和30中,18是小的数),在18的因数中找公因数的确更快、更好些。

所以请老师们在平时的教学中也去分析、思考,把握例题和练习中每个需要提升之处,在课堂中时时注意方法和策略的渗透,较好地用实这套教材。

最大公因数教学反思简短篇八

教学 例3时先用边长6厘米和4厘米的正方形纸片,分别铺长18厘米、宽12厘米的长方形,教师选择正方形纸片铺长方形的活动教学公因数,是因为这一活动能吸引学生发现和提出问题,能引导学生思考。学生用同两张正方形纸片分别铺一个不同的长方形,面对出现的两种结果,会发现“为什么有时正好铺满、有时不能”,“什么时候正好铺满、什么时候不能”这些有研究价值的问题。他们沿着长方形的边铺正方形纸片,就会想到正好铺满与不能正好铺满的原因可能和边长有关,于是产生进一步研究长方形边长和正方形边长关系的愿望。分析长方形的长、宽和正方形边长之间的关系,按学生的认知规律,设计成两个层次: 第一个层次联系铺的过程与结果,从长方形的长、宽除以正方形的边长没有余数和有余数的层面上,体会正好铺满与不能正好铺满的原因。第二个层次根据边长6厘米的正方形正好铺满长18厘米、宽12厘米的长方形、而边长4厘米的正方形不能正好铺满长18厘米、宽12厘米的长方形的经验,联想边长几厘米的正方形还能正好铺满长18厘米、宽12厘米的长方形。先找到这些正方形,把它们边长从小到大排列,知道这样的正方形的个数是有限的。再用“既是12的因数,又是18的因数”概括地描述这些正方形边长的特征。显然,前一层次形象思维的成分较大,思考难度较小,对后一层次的抽象认识有重要的支持作用。

反思:突出概念的内涵、外延,让学生准确理解概念。

我用“既是……又是……”的描述,让学生理解“公有”的意思。例3先联系用边长1、2、3、6厘米的正方形正好能铺满长18厘米、宽12厘米的长方形纸片的现象,从长方形的长、宽分别除以正方形边长都没有余数,得出正方形的边长“既是12的因数,又是18的因数”,一方面概括了这些正方形边长的特点,另一方面让学生体会“既是……又是……”的意思。然后进一步概括 “1、2、3、6既是12的因数,又是18的因数,它们是12和18的公因数”,形成公因数的概念。

由于知识的迁移,学生很容易想到用集合图直观形象地显示公因数的含义。第27页把8的因数和12的因数分别写到两个集合圈里,这两个集合圈有一部分重叠,在重叠部分里写的数既是8的因数,也是12的因数,是8和12的公因数。先观察这个集合图,再填写第28页的集合图,学生能进一步体会公因数的含义。概念的外延是指这个概念包括的一切对象。

运用数学概念,让学生探索找两个数的最大公因数的方法。

例4教学求两个数的最大公因数,出现了两种解决问题的方法。学生有的先分别写出8和12的因数,再找出它们的公因数和最大公因数。有的在8的因数里找12的因数,这样操作比较方便,但容易遗漏。我有意引导学生选择第一种。练习五的第3题就是这种方法的应用。

充分利用教育资源,自制课件,协助教学。

限于操作的局部性,我认真制作了实用的课件,让直观、清晰的页面直接辅助我教学,学生表现积极,课堂气氛比较活跃,提问、释疑、解惑,练习的热情很高。

本课设计目的是使学生学习公因数、最大公因数的意义,并学会找两个数的最大公因数的方法,从整节课学生表现情况和课后作业反馈来看,学生对本部分知识知识掌握较好,学习积极并具有热情,就实效性讲很令人满意。

最大公因数教学反思简短篇九

“因数和倍数”的知识,向来是小学数学教学的难点。“最大公因数”这节课是在学生掌握了因数、倍数、找因数的基础上进行的,通过这节课的学习,学生会说出两个数的公因数和最大公因数,会求两个数的最大公因数,并为后面学习分数的约分打好基础。反思这节课我认为有以下几点:

1、通过找8和12的因数,引出公因数的概念。

教师引导学生先写出8和12的因数,再观察发现8和12有公有的因数,自然引出了公因数的概念。然后通过集合圈的形式,直观呈现什么是公因数,什么又是最大公因数。促进学生建立”公因数和最大公因数”的概念。

2、通过找18和27的最大公因数,掌握找最大公因数的方法。

掌握了公因数的概念之后,教师放手给予学生足够的时间,让学生自主探究找最大公因数的方法。交流反馈时,考虑到中下水平的学生,教师只汇报了书本中的三种基本方法,并没有提到短除法。

本节课,教师从认识公因数——理解最大公因数——探究找最大公因数的方法——相应的练习巩固这几个环节入手,每个环节都是层层递进,环环相扣,促进了学生对概念的理解。

《数学课程标准》指出:“学生是学习的主人,教师是数学学习的组织者、引导者与合作者。”在本节课中,我努力将找最大公因数的概念教学课,设计成为学生探索问题,解决问题的过程,各个环节的学习流程,体现了教师是组织者——提供数学学习的材料;引导者——引导学生利用各种途径找到公因数,最大公因数;合作者——与学生共同探讨规律。在整个教学的过程中,学生真正成了课堂学习的主人,寻找最大公因数的方法是通过学生积极主动地探索以及不断地中验证得到的,所以整节课学生个性得到发挥。

最大公因数教学反思简短篇十

本节课教学的内容是认识公因数、最大因数以及求两个数的最大公因数的方法,这些知识是在学生掌握了因数、倍数、找因数的基础上教学的。结合本节课的特点,联系本班学生的实际情况,教师在教学过程中做了如下的尝试

一、适时地渗透集合思想。在教学例1时,解题过程不仅呈现了用列举法解决问题。还引导学生用集合图来表示答案,从而渗透了集合思想,为后续的学习奠定感性认识。

二、关注学生探究活动的空间,将自主探究活动贯彻始终。在教学中,教师为学生创设了三次自主探究的机会。即一在情境中通过动手操作认识公因数,二用集合图表示因数之间的关系,三用自己的方法求出两个数的最大公因数。在这几次的探究活动中,教师始终积极地调动学生的情感,启发他们主动参与,引导学生感知、理解,从而在脑中形成系统的知识体系。

本节课是教学运用最大公因数的有关知识来解决生活中的实际问题。通过创设生活情境,让学生借助学具摆一摆,算一算或在纸上用彩笔画一画的方法把出现的几种情况记录下来,既提高学生的学习积极性,也让学生体会到新知与生活的密切联系。同时,通过引导学生自主探索、组织交流并验证结论,让学生体会获得成功的喜悦,更加积极地探索新知,掌握所学知识。

本节课的不足之处在于练习部分时间过于仓促,没有足够的时间让学生交流与理解,部分学困生掌握不够到位。这需要教师在今后教堂中合理安排时间,避免时间过于紧迫。

声明:准根文档网所有作品(图片、文字)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系 saizw@outlook.com