高中必考数学知识点归纳整理实用(四篇)

每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧

高中必考数学知识点归纳整理篇一

2.避免题海战术:对于一看就会的题型直接pass掉,做精题,精做题。不要什么都做没有选择,没有计划,如果每一题都做不仅会浪费时间而且也提高不了多少。

3.不专注于难题:不会的题不要一个人在那死扣,如果一道题你看了20分钟都没有思路,无从下手,要么请教高手要么放弃,不要专注于难题。尽量做一些看起来会但是不能全面做出来的题,克服会而做不对,对而做不全,这样提升空间比较大。

4.各类题的解题方法:不同的题型有不同的解题方法,要善于归纳和整理。要选择填空题可以选择排除法、带进去验证、直觉、数形结合的方法。简单的题答得时候尽量要全面。压轴题,选择、填空、答题都各自的压轴题,会做就做不会做就暂时放弃,先把会的题做出来后再回过头看。

5.训练考试意境:把每次训练都当做高考,数学的复习离不开做题,但是做题量不能太大,做题的时候更应该模拟高考的时间和场景,下午三点到五点考数学,所以在复习的时候也在这个时间做题,适应高考模式。

高中必考数学知识点归纳整理篇二

审视知识结构

高考数学试题一直注重对思维方法的考查,数学思维和方法是数学知识在更高层次上的抽象和概括。知识是思维能力的载体,因此通过对知识的考察达到考察数学思维的目的。你要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法。

看例题

参考书上数学例题不能看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。

经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目的来源搞清了,在题后加上几个批注,说明此题的“题眼”及巧妙之处,收益将更大。

研究题目

数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,要通过一题联想到很多题。你要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。

高中必考数学知识点归纳整理篇三

上课要认真听课,要多做笔记,记完笔记一定要课下找时间看,多加复习,看不懂的找同学或者是老师帮忙。当别人在玩的时候,你抽出时间来看笔记坚持一段时间,你会发现成绩有了明显的提高。

课下要提前预习提前做好准备,找出难点和重点,上课老师讲的时候要认真的听讲抓住课堂上的时间是最重要的,如果你课堂上不认真听,课下要付出5倍的力量和时间才能抓回来。

课上听了只是一部分,课下还要勤加练习,多做练习题。当别人在玩的时候,你抽出时间来做些题,巩固知识,不会的题思考之后再去问,有助于提高学习效率。

考试完之后,要总结错题,要把错题整理到一个错题本上思考如何做错,总结为何做错,今后要怎么做才能不会做错。总结完不能扔在一边,而要常看,常复习。并写上错的原因,方便看的时候一目了然提高自己的学习效率。

课下找学习好的围在一起做练习题,讨论问题,遇到不会的问题,就多问,会了的话就多练,不会的就问,有利于知识的提高。

高中必考数学知识点归纳整理篇四

必修一

第一章:集合和函数的基本概念

这一章的易错点,都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就会丢分。次一级的知识点就是集合的韦恩图、会画图,掌握了这些,集合的“并、补、交、非”也就解决了。

还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。在第一轮复习中一定要反复去记这些概念,最好的方法是写在笔记本上,每天至少看上一遍。

第二章:基本初等函数

——指数、对数、幂函数三大函数的运算性质及图像

函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。关于这三大函数的运算公式,多记多用,多做一点练习,基本就没问题。

函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考点。另外指数函数和对数函数的对立关系及其相互之间要怎样转化等问题,需要着重回看课本例题。

第三章:函数的应用

这一章主要考是函数与方程的结合,其实就是函数的零点,也就是函数图像与x轴的交点。这三者之间的转化关系是这一章的重点,要学会在这三者之间灵活转化,以求能最简单的解决问题。关于证明零点的方法,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这些难点对应的证明方法都要记住,多练习。二次函数的零点的δ判别法,这个需要你看懂定义,多画多做题。

必修二

第一章:空间几何

三视图和直观图的绘制不算难,但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物,这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推(建议用纸做一个立方体来找感觉)。

在做题时结合草图是有必要的,不能单凭想象。后面的锥体、柱体、台体的表面积和体积,把公式记牢问题就不大。

第二章:点、直线、平面之间的位置关系

这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生多看图。自己画草图的时候要严格注意好实线虚线,这是个规范性问题。

关于这一章的内容,牢记直线与直线、面与面、直线与面相交、垂直、平行的几大定理及几大性质,同时能用图形语言、文字语言、数学表达式表示出来。只要这些全部过关这一章就解决了一大半。这一章的难点在于二面角这个概念,大多同学即使知道有这个概念,也无法理解怎么在二面里面做出这个角。对这种情况只有从定义入手,先要把定义记牢,再多做多看,这个没有什么捷径可走。

第三章:直线与方程

这一章主要讲斜率与直线的位置关系,只要搞清楚直线平行、垂直的斜率表示问题就错不了。需要注意的是当直线垂直时斜率不存在的情况是考试中的常考点。另外直线方程的几种形式所涉及到的一般公式,会用就行,要求不高。点与点的距离、点与直线的距离、直线与直线的距离,只要直接套用公式就行,没什么难点。

第四章:圆与方程

能熟练地把一般式方程转化为标准方程,通常的考试形式是等式的一边含根号,另一边不含,这时就要注意开方后定义域或值域的限制。通过点到点的距离、点到直线的距离、圆半径的大小关系来判断点与圆、直线与圆、圆与圆的位置关系。另外注意圆的对称性引起的相切、相交等的多种情况,自己把几种对称的形式罗列出来,多思考就不难理解了。

必修三

总的来说这一本书难度不大,只是比较繁琐,需要有耐心的去画图去计算。

程序框图与三种算法语句的结合,及框图的算法表示,不要用常规的语言来理解,否则你会在这样的题型中栽跟头。

秦九韶算法是重点,要牢记算法的公式。

统计就是对一堆数据的处理,考试也是以计算为主,会从条形图中计算出中位数等数字特征,对于回归问题,只要记住公式,也就是个计算问题。

概率,主要就只几何概型、古典概型。几何概型只要会找表示所求事件的长度面积等,古典概型只要能表示出全部事件就可以。

必修四

第一章:三角函数

考试必在这一块出题,且题量不小!诱导公式和基本三角函数图像的一些性质,没有太大难度,只要会画图就行。难度都在三角函数形函数的振幅、频率、周期、相位、初相上,及根据最值计算a、b的值和周期,及恒等变化时的图像及性质变化,这部分的知识点内容较多,需要多花时间,不要再定义上死扣,要从图像和例题入手。

第二章:平面向量

向量的运算性质及三角形法则、平行四边形法则的难度都不大,只要在计算的时候记住要“同起点的向量”这一条就ok了。向量共线和垂直的数学表达,是计算当中经常用到的公式。向量的共线定理、基本定理、数量积公式。分点坐标公式是重点内容,也是难点内容,要花心思记忆。

第三章:三角恒等变换

这一章公式特别多,像差倍半角公式这类内容常会出现,所以必须要记牢。由于量比较大,记忆难度大,所以建议用纸写好后贴在桌子上,天天都要看。要提一点,就是三角恒等变换是有一定规律的,记忆的时候可以集合三角函数去记。

必修五

第一章:解三角形

掌握正弦、余弦公式及其变式、推论、三角面积公式即可。

第二章:数列

等差、等比数列的通项公式、前n项及一些性质常出现于填空、解答题中,这部分内容学起来比较简单,但考验对其推导、计算、活用的层面较深,因此要仔细。考试题中,通项公式、前n项和的内容出现频次较多,这类题看到后要带有目的的去推导就没问题了。

第三章:不等式

这一章一般用线性规划的形式来考察学生,这种题通常是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图,然后再根据实际问题的限制要求来求最值。

声明:准根文档网所有作品(图片、文字)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系 saizw@outlook.com